<4 INCLUDE
SECURITY

Security Assessment the EasyCrypt
Encryption Service for the Open Technology
Fund

& " OPEN
| | TeEcHNOLOGY
“ & FUND

Page 1 of 33
CONFIDENTIAL
DRAFT REPORT

INCLUDE
SECURITY

TABLE OF CONTENTS
EXECUTIVE SUMMARY ...ttt ettt s e e e eretatsiesssesesesasstassssesessssessssssssessesseessssnsnsesessssessnnnnns 4
NYoloToISI= 1Yo 1Y/ 11 a o Yo [o] oY -V AN SR 4
YN YT 4 =T ol @] oY =Tt {1V PRSP 4
FINAINGS OVEIVIEW ...eiiiiiiiieeccieee ettt e ettt e e e et e e e et e e e s etteeeeebteeeeeabtaaeeestaeeeestseeesnsseeesastaseeastasesssrneesannes 4
I T =T o N 4
ASSESSIMENT RESULTS ettt e e s e e e e ettt re e e e e e e e e e aaa e e e e eeeeeanessaneeeeeaennnesnanns 5
CRITICAL-RISK FINDINGS ...ttt ecetttiiess e e eeetataiisss s e e eeeteaaraaasseeeassaesssssssseseesseesssnnsnsessessanns 6
C1: Persistent Cross-Site SCrIPtING (XSS) couuriiiiiiiiie ettt e e e e s be e e e e are e e s e abae e e eareeeeenranas 6
C2: Insecure CORS Origin MatCh.........uiiii ettt e e e e eate e e e e aba e e e e eareee e e enraeas 7
HIGH-RISK FINDINGSottt e e e e e e ettt e s e e e e e e e eta e e eeeaeeeeaesanaeeeaeeeeesssnnnns 10
o R (e Te [A A @ LU= AV o 1=t o o PR U 10
MEDIUM-RISK FINDINGS.....ccettiiieii ettt reee e e e e e e et re e e e e e e e e eaaaaeeeeeeeeeeassaanaeeeeeeneessnnnnns 13
M1: Temporary 502 Denial of Service Condition Identifiedccceeiriiiiiiiiiiiiccce e 13
M2: Authentication System Does Not Protect Against Brute-Force Attacks.......ccccevevvviieeericiieeeencneennn. 14
M3: Sensitive Information Stored in LOCAIStOragecovvuveeriieeiiiiiirieeete ettt 15
LOW-RISK FINDINGS.......eututuuutititututttitiiitiaieieieiaieiaieiaaarababebeaebeseaeasssbsssaesssssssssssssssnsssesssssssnsssnsssssnses 17
L1: Application Functionality Can Be Used to Confirm Valid AcCountsccccevvciieeeniiieeecccieee e, 17
L2: Cryptographic Secrets Stored in SOUICE COUE......coiiuiiiiiiiiiiiiiiiie e cree e ecree et e e esrre e e e saae e e e sareeeeas 18
L3: Insecure Mailgun WebHook Implementation.............coeeiiiiiiciiie i 19
L4: Weak User Password REQUITEMENTSc.ccuuiiiiiiiiieeeiiieeeeciiieeeesieee s sstre e s e sitaeeessneaeesssnsaeeesnssaeessnasnneeens 20
L5: Credentials for External Services Stored in SOUrce CoOdeuuiiiiiniiiiniiiniieeieenee et 20
L6: Content Security Policy Not IMmplemented..........oooviiiiinciiie et 21
L7: HTTP Strict Transport Security Not Implemented.......ccccuviiieiiiieiciiiie e 22
L8: Missing X-XSS-Protection HEAUENcoiiuiiiiieiiie ettt ettt e e rtre e e s stre e e e saeae e e eatae e e e aaaneeeas 23
L9: Missing X-Frame-Options HEAENcoiei ittt e e e et e e e e e e e bere e e e e e e e e ennnnnns 23
L10: AES CFB Mode Encryption Used Without Integrity Checkingcccceeeieieciiiiiiie s 24
INFORMATIONAL FINDINGSttt ettt s e e eeettss s s s e e e e e eabaas s s s e e e eaaataaasseeaaesaessssnnns 26

Page 2 of 33
CONFIDENTIAL
DRAFT REPORT

INCLUDE
SECURITY

I1: Use of RoundCube Version with Known Vulnerabilities...........cooceerieieiiiniiiieeee e 26
12: Input Validation Not Used Consistently Throughout Application........ccceccveiiiiiieiiiiiieec e 26
13: Missing X-Content-Type-0ptions HEAUENcccuiiiiiiiiie ittt e e s naaee e 27
APPENDICES ..ottt ettt eeee ettt et et et et et et et et et et esetes et eeeeeseseseesseses st sssssssssssssnssnsnnnsnnnnnnnnnnns 29
Al: EasyCrypt SErvice DESCIIPTIONueeiiiiiiiiieeiiitete ettt ettt e e e s e e ettt e e e e e s e s sabrbeeeeeseeesannnnes 29
A2: ArCHITECLUIE REVIEW ...eiieiiiiiiiiesiee ettt ettt et sttt et e st e st e st e s bt e e sabeeesabeesabeesneeesabeeenneas 29
A3 ArCHITECTUIE RISKS ettt ettt ettt e e st e st e s b e e sb e e e sabeesabeesneeesabeeeneas 30
FA N = A 00 V1T - =L OO UN 32
Page 3 of 33
CONFIDENTIAL

DRAFT REPORT

INCLUDE
SECURITY

EXECUTIVE SUMMARY

Scope and Methodology

IncludeSec performed a security assessment of the EasyCrypt Encryption Service for the Open
Technology Fund. The assessment team performed a 3 day effort spanning from May 12th —
May 14th, 2017, using a Light Grey Box Assessment Methodology which included a detailed
review of all the components described above in a manner consistent with the original
Statement of Work (SOW).

Assessment Objectives

The objective of this assessment was to identify and confirm potential security vulnerabilities
within targets in-scope of the SOW. The team assigned a qualitative risk ranking to each finding.
IncludeSec also provided remediation steps which Open Technology Fund could implement to
secure its applications and systems.

Findings Overview

IncludeSec identified 19 categories of findings. There were 2 deemed a “Critical-Risk,” 1
deemed a “High-Risk,” 3 deemed a “Medium-Risk,” and 10 deemed a “Low-Risk,” which pose
some tangible security risk. Additionally, 3 “Informational” level findings were identified that do
not immediately pose a security risk.

IncludeSec encourages Open Technology Fund to redefine the stated risk categorizations
internally in a manner that incorporates internal knowledge regarding business model,
customer risk, and mitigation environmental factors.

Next Steps

IncludeSec advises Open Technology Fund to remediate as many findings as possible in a
prioritized manner and make systemic changes to the Software Development Life Cycle (SDLC)
to prevent further vulnerabilities from being introduced into future release cycles. This report
can be used by Open Technology Fund as a basis for any SDLC changes. IncludeSec welcomes
the opportunity to assist Open Technology Fund in improving their SDLC in future engagements
by providing security assessments of additional products.

Page 4 of 33
CONFIDENTIAL
DRAFT REPORT

INCLUDE
SECURITY

ASSESSMENT RESULTS

At the conclusion of the assessment, Include Security categorized findings into four levels of
perceived security risk: critical, high, medium, or low. Any informational findings for which the
assessment team perceived no direct security risk, were also reported in the spirit of full
disclosure. The risk categorizations below are guidelines that reflect best practices in the
industry and may differ from Open Technology Fund’s internal perceived risk. It is common and
encouraged that all clients recategorize findings based on their internal business risk
tolerances. All findings are described in detail within the final report provided to Open
Technology Fund.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s
infrastructure and customers. This includes loss of system, access, or application control,
compromise of administrative accounts or restriction of system functions, or the exposure of
confidential information. These threats should take priority during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or
application control, compromise of administrative accounts or restriction of system functions,
or the exposure of confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to
compromise accounts, data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically
attributed to configuration issues, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which
cover defense-in-depth and best-practice changes which we recommend are made to the
application.

The findings below are listed by a risk rated short name (e.g., C1, H2, M3, L4, I5) and finding
title. Each finding includes: Description (including proof of concept screenshots and lines of
code), Recommended Remediation, and References.

Page 5 of 33
CONFIDENTIAL
DRAFT REPORT

4 INCLUDE
SECURITY

CRITICAL-RISK FINDINGS
C1: Persistent Cross-Site Scripting (XSS)

Description:

Persistent, or stored, cross-site scripting (XSS) occurs when data provided to a web application
by a user is first stored persistently within back-end data stores and then displayed to users in a
web page without being correctly encoded within the context where it is displayed. An attacker
could store malicious client-side executable code to be rendered and executed in a client
browser later. Such code might perform actions on behalf of a victim user or compromise their
session or account.

There is one instance of persistent XSS discovered in the EasyCrypt application.

For example, malicious code can be sent to the victim through an email with the following
subject: 123'<script>alert(1)</script>. The screenshot below shows a JavaScript alert dialog
generated when the victim reads the specially forged email using the EasyCrypt web
application:

EasyCrypt Petfect Emall Privacy = [Gmail] » Sent Mall - Mazilla Flrefox

Sl O EasyCrypt PerfectEmi x YB3

easycrypt.co,

| JE]

=
k.
»

The JavaScript code is executed when the email is both previewed and read in a different tab.
The preview is feature is run when the user clicks on a specific email in the list once, and the
email is opened in a different tab when the user double-clicks the email.

An attacker could use this vulnerability to gain full control of the user's EasyCrypt password,
which is stored in localStorage and accessible through JavaScript. Using this password, the
attacker can read all of the user's emails, download the PGP private key and decrypt all emails
encrypted using it.

Page 6 of 33
CONFIDENTIAL
DRAFT REPORT

INCLUDE
SECURITY

The vulnerability seems to be present in the way the client-side application modifies the DOM
in order to display the subject. The root cause was not investigated because it was out of the
scope of this engagement.

Recommended Remediation:

Cross-Site Scripting vulnerabilities can be reliably prevented with a combination of strict input
validation and encoding of all HTML special characters in potentially malicious data. Encoding is
generally done directly before a web application or client-side script displays the data, and
many programming languages have built-in functions or libraries which provide this encoding
(in this context, also called quoting or escaping).

Note that suitable encoding can be applied depending on where the user-supplied data is
found. For instance, data appearing inside an HTML block can be HTML-encoded, while data
appearing inside a JavaScript block should be JavaScript-encoded.

References:

OWASP Cross-Site Scripting (XSS) Page
XSS (Cross-Site Scripting) Prevention Cheat Sheet
Development and Implementation of Secure Web Applications

C2: Insecure CORS Origin Match

Description:

Cross-Origin Resource Sharing (CORS) allows JavaScript code running in the context of domain A
to perform HTTP requests to domain B and get access to the HTTP response body. This
communication is only possible if the resource owner (domain B) follows the CORS protocol and
specifically allows the consumer domain (domain A) in the Access-Control-Allow-Origin HTTP
response header.

Another feature from the CORS specification allows the JavaScript code running in the context
of domain A to include cookies for the domain B in the HTTP requests, this allows the client to
consume the services offered by the resource owner using any sessions available in the
browser.

A misconfiguration was identified in the way that EasyCrypt implements the Origin header
match, which allows an attacker to bypass any restrictions and gain access to sensitive
information such as user emails. First, let's analyze an HTTP request sent by the browser:

Page 7 of 33
CONFIDENTIAL
DRAFT REPORT

https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.cpni.gov.uk/documents/publications/2011/2011026-development_and_implementation_of_secure_web%20applications.pdf?epslanguage=en-gb
https://www.html5rocks.com/en/tutorials/cors/

INCLUDE
SECURITY

GET /?_task=mail& caps=... HTTP/1.1
Host: webmail.stage.easycrypt.co
Origin: https://auth.stage.easycrypt.co

The Origin header is sent by the browser in the request and represents the consumer domain
(Domain A in the previous paragraphs). The Host header is the target of the HTTP request and
represents the resource owner (B). In this case, both domains are under the control of
EasyCrypt and access is granted by adding two headers to the response:

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://auth.stage.easycrypt.co
Access-Control-Allow-Credentials: true

An issue was identified in the way the value of the Origin header is matched in the EasyCrypt
application, which allows the following interaction:

GET /?_task=mail& caps=... HTTP/1.1
Host: webmail.stage.easycrypt.co
Origin: "https://webmailxstagexeasycrypt.co":https://webmailxstagexeasycrypt.co

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://webmailxstagexeasycrypt.co
Access-Control-Allow-Credentials: true

This vulnerability can be exploited by an attacker by registering the
webmailxstagexeasycrypt.co domain, creating custom JavaScript code that will use CORS to
read emails from webmail.stage.easycrypt.co and then convince EasyCrypt users into clicking
on a link to the attacker's domain. If the victim has an active EasyCrypt session then the
attacker will be able to access all his emails.

The issue also affects pkd.stage.easycrypt.co, in this case the severity is lower, but can still be
exploited to extract user information such as encrypted versions of the PGP private key.

Most likely this problem occurs because of an insecure usage of regular expressions to match
the allowed domains. The application code is most likely using a regular expression such as
.*.easycrypt.co when it should be using .*\.easycrypt.co. The assessment team recommends
conducting an in-depth penetration test that involves a review of the source code to uncover
other issues such as this.

Recommended Remediation:

The assessment team recommends using string comparisons to match the Origin header
received in HTTP requests with a list of allowed domains.

Page 8 of 33
CONFIDENTIAL
DRAFT REPORT

https://webmailxstagexeasycrypt.co/

INCLUDE
SECURITY

Finally, create a list of all the resources which can be consumed using CORS requests and
analyze if there is a functional requirement associated with it. In the
webmail.stage.easycrypt.co application it might be possible to simply disable all CORS features.

References:

Exploiting CORS Misconfigurations
CWE-942: Overly Permissive Cross-domain Whitelist

Page 9 of 33
CONFIDENTIAL
DRAFT REPORT

http://blog.portswigger.net/2016/10/exploiting-cors-misconfigurations-for.html
https://cwe.mitre.org/data/definitions/942.html

INCLUDE
SECURITY

HIGH-RISK FINDINGS
H1: Redis Key Query Injection

Description:

Two instances of Redis key query injection were identified in the EasyCrypt application. This
vulnerability occurs when user-controlled variables are used to create a string which is then
used to query Redis keys.

Instance #1

The ec_jwt_session class defined in easycrypt-ec-webmail-
0a28dd7be148/plugins/ec_private/jwt/ec_jwt.php creates the session_key attribute using
user-controlled variables:

$this->session_key = "session-".$this->ec_jwt->get_secret().
>get_email_user();

.$this->ec_jwt-

Which is then used to perform Redis queries:

if ($data = $this->redis->hGetAll($this->session_key)) {

This vulnerability was combined with the hard-coded encryption and signing secret for JWT and
exploited in order to retrieve PGP keys for all users from the stage environment:

User with sub 1350122 does not exist
User with sub 1350123 does not exist
Got key with fingerprint 4BD57CCE62532CE41A051690A19385A5218D97CF for pic...@yandex.ru
User with sub 1350125 does not exist

User with sub 1350138 does not exist
Got key with fingerprint 5F011049C98405F8255858DD0299B26D5AEDD680 for rud...@gmail.com
Got key with fingerprint OAF559D756COF4DE1FQ738D1B53B2C2224E44AE6 for chr...@gmail.com

Instance #2

This instance was identified in the /signup resource exposed by the account micro-service. It
can be confirmed by sending these requests:

Page 10 of 33
CONFIDENTIAL
DRAFT REPORT

4 INCLUDE
@ SECURITY

\Q\ EASYCIRYET

Welcome, kmzn@aol.]p!

Choose password

ot lewat B coaractens,
mrwrreem 7 Gopis ard I wlars|

Confirm password

Cuttertly eoly Shwame. Sl on Sala vae Moy mecu) el Yot
browesre ww susported

STEP 2 Connect to your emall service

Figure 1: https://account.stage.easycrypt.co/signup?id=*

QEASYCRYET

Welcome, b.a.schram@hotmall.com!

STEP 1 Secunity setup

Choose password
‘ Nt leiz & Ctarachen
v 3 diges ard 3 hetlers)

Confirm password |

Cumartly osly Chrume, Tewton. Solwt iven Pavats ol sesl B
DR e erTad

Connect 1o your emait service

Figure 2: https://account.stage.easycrypt.co/signup?id=a*

This vulnerability instance can be exploited to identify application users and add new PGP keys
to their accounts.

Note

More instances of this vulnerability are very likely to be present in the application. The security
assessment team recommends a full penetration test with source code review be conducted to
identify and fix all such issues.

Page 11 of 33
CONFIDENTIAL
DRAFT REPORT

INCLUDE
SECURITY

Recommended Remediation:

The assessment team recommends implementing strict input validation for any user-controlled
parameter which will be used in Redis queries. Input should be validated using a whitelist
regular expression which only allows a-zA-Z0-9. Another potential solution is to concatenate all
the user-controlled parameters into a string, apply the SHA1 hashing algorithm, and use the
result as the search key for Redis queries.

References:

Injection Flaws

Page 12 of 33
CONFIDENTIAL
DRAFT REPORT

https://www.owasp.org/index.php/Injection_Flaws

INCLUDE
SECURITY

MEDIUM-RISK FINDINGS
M1: Temporary 502 Denial of Service Condition Identified

Description:

A Denial of Service vulnerability was identified during the security assessment of the EasyCrypt
application. The issue was triggered using Burp Suite's automated vulnerability scanner and
resulted in the account.easycrypt.co domain returning HTTP code 502 for all requests:

HTTP/1.1 502 Bad Gateway

Server: nginx/1.12.0

Date: Fri, 12 May 2017 19:45:29 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 173

Connection: close

Access-Control-Allow-Origin: https://account.easycrypt.co
Access-Control-Allow-Credentials: true

<html>

<head><title>502 Bad Gateway</title></head>
<body bgcolor="white">

<center><h1>502 Bad Gateway</h1l></center>
<hr><center>nginx/1.12.0</center>

</body>

</html>

The servers were inaccessible for at least 15 minutes after stopping the automated scan
process.

The root cause of this issue couldn't be identified due to the short period for this security
review, but given the low bandwidth required to trigger this denial of service, it seems to be a
performance issue in the application code.

An attacker with almost no technical skills could exploit this issue to stop users from accessing
the application.

Recommended Remediation:

The assessment team recommends identifying the root cause which made the service
unavailable and fixing it.

Other recommendations such as improving monitoring and alerting for all micro-services, auto-
scaling when servers have a high load, and detecting unavailable instances will lower the impact
of this type of issue in the future.

Page 13 of 33
CONFIDENTIAL
DRAFT REPORT

INCLUDE
SECURITY

References:

CWE-400: Uncontrolled Resource Consumption (Resource Exhaustion)

M2: Authentication System Does Not Protect Against Brute-Force Attacks

Description:

The authentication system does not prevent brute-force attacks against accounts. Given a large
number of authentication attempts, an attacker may be able to use an automated brute-force
attack to successfully guess users' authentication credentials.

A simple proof-of-concept script was developed to perform a brute-force attack on the
application. The script performs 200 invalid login attempts and then sends the valid password:

[include:/easycrypt/tools] 5s $ python bruteforce.py
Invalid password: ©
Invalid password: 1
Invalid password: 2

Invalid password: 197
Invalid password: 198
Invalid password: 199
User password found! vX...13J

The vulnerability exists in the following code from easycrypt-ec_auth/common/gatekeeper.py:

class Authenticator(object):
@staticmethod
def login_user_pass(email, password, session):
user = session.query(User).filter(User.email == email).first()
if user is None:
ECLog.log("Unable to find user by email: {@}".format(email), ECLog.WARNING)
raise ECException(falcon.HTTP_401, ECException.FAILED_STATUS, "Unauthorized")

If user not active, do not allow to login

if user.active == 0:
ECLog.log("Inactive user try to login: {@}".format(email))
return False, False

hashed = str(user.password)
if bcrypt.hashpw(str(password), hashed) == hashed:

return True, user

return False, False

Page 14 of 33
CONFIDENTIAL
DRAFT REPORT

https://cwe.mitre.org/data/definitions/400.html

4 INCLUDE
SECURITY

Recommended Remediation:

The assessment team recommends employing anti-automation for the authentication layer.
One example might be requiring an authenticating user to complete a CAPTCHA after a small
number of failed authentication attempts. This makes a brute-force authentication attack
impossible to automate and greatly reduces the risk.

Another potential solution to this issue is to require all users to use multi-factor authentication
for their accounts.

References:

OWASP Authentication Cheat Sheet
Blocking Brute Force Attacks
Development and Implementation of Secure Web Applications

M3: Sensitive Information Stored in LocalStorage

Description:

LocalStorage is a persistence feature added to the browsers as part of HTML5. LocalStorage
provides a key-value store which is persisted on disk and only removed when the application
developer specifically requests it.

Sensitive information, including the user's EasyCrypt password, emails, and PGP keys are stored
in the browser's localStorage without encryption. The EasyCrypt user password is the most
critical piece of information since it can be used to login into the EasyCrypt account and decrypt
any existing emails.

LocslStorage Detalls

Clear LocalStorage | Copy Ta Clipboard {CSY) Ahou Close

ttps//webmail.stage. casycryn

Leps/webimail.s

webmail.stag

Jiwebmall.stage ess

listCachesSNBOX_12

IsLCachemnO X 12
i/ _storageDurahility 1
IstCacheMnox 120007, 120008, * 120005 1

B20GNIhEn10.4D5A70dT

stage.casycrypt IntCochesNBOX 12 {"fromio™"<span class~\"adr\

sLage, pasyerypt passphra 1494710243007

https//webmail stage.casyorypt ec

hetps Jfwebmail stage sasyorypt B session [“0"“onad-" " d™ M hred™ "hilps: [fwebmail stage easy

Page 15 of 33
CONFIDENTIAL
DRAFT REPORT

https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Prevent_Brute-Force_Attacks
https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks
http://www.cpni.gov.uk/documents/publications/2011/2011026-development_and_implementation_of_secure_web%20applications.pdf?epslanguage=en-gb

INCLUDE
SECURITY

An attacker with access to the user's computer will be able to read the sensitive information
from the disk.

Recommended Remediation:

The assessment team recommends using sessionStorage to store application secrets.
Information stored in sessionStorage will be removed once the browser tab is closed, reducing
the attack window for attacks on the user's computer.

References:

HTML5 Security Cheat Sheet

Page 16 of 33
CONFIDENTIAL
DRAFT REPORT

https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet

INCLUDE
SECURITY

LOW-RISK FINDINGS

L1: Application Functionality Can Be Used to Confirm Valid Accounts

Description:

The EasyCrypt application's login functionality is implemented in such a way that would allow
an anonymous user to confirm system user's email addresses as valid accounts. In the current
implementation, the application responds differently depending on whether the input supplied
was recognized as associated with a valid user or not. This behavior could be used as part of a
two-stage automated attack. During the first stage, an attacker would iterate through a list of
account names to determine which correspond with valid accounts. During the second stage,
the attacker would use a list of common passwords to attempt to brute force credentials for
accounts that were recognized by the system in the first stage.

Proof of Concept

The EasyCrypt application presented the message below when the supplied input was
recognized as associated with a valid user account:

POST /auth HTTP/1.1
Host: auth.stage.easycrypt.co

{"email":"ec.audit2@yahoo.com", "password":"846586ce64193ce8fdd50a4b5bc65ffc8b1a9c1011b08dbasdf8
ffbe2f67e3ec8"}

HTTP/1.1 401 Unauthorized

{
"status": "failure",
"debug": "Authentication with password failed: ec.audit2@yahoo.com",
"message": "Unauthorized"

¥

And presented the message below when the input was not recognized by the system:

POST /auth HTTP/1.1
Host: auth.stage.easycrypt.co

"email":"foo@yahoo.co","password":"846586ce64193ce8fdd50a4b5bc65Fffc8b1a9c1011b08dbadf8ffbe2f6
7e3ec8"}

HTTP/1.1 401 Unauthorized

{

"status": "failure",
"message": "Unauthorized"

Page 17 of 33
CONFIDENTIAL
DRAFT REPORT

INCLUDE
SECURITY

Recommended Remediation:

The assessment team recommends adjusting the functionality described above to ensure that it
does not disclose whether an account exists or not. This can be accomplished by presenting a
consistent error message in both cases.

References:

Username Enumeration Vulnerabilities
Testing for User Enumeration and Guessable User Account
Development and Implementation of Secure Web Applications

L2: Cryptographic Secrets Stored in Source Code

Description:

Cryptographic secrets used for signing and encrypting JWT in the staging environment were
found within the EasyCrypt application's source code. As access to the source code may be
exposed due to another exploit (e.g., file traversal) or via a shared source code repository, any
attacker or malicious insider would have access to these secrets. This may enable them to
attack the cryptographic systems used by the application.

The hard-coded secrets were identified in easycrypt-ec-
webmail/plugins/ec_private/config.inc.php and are only used in the staging environment.

// Shared AES key

$config['shared_key"'] '934...f01';

// JWT Secret
$config['jwt_secret']

c 5

Since the staging environment is publicly accessible an attacker could use this information to
perform more advanced attacks on the staging environment and then potentially pivot into the
production site.

The encrypted and signed JWT store important information such as the user's ID and role.
Attackers which can forge valid JWTs will, for some specific application features, be able to
impersonate an application user or elevate their role to administrator.

Page 18 of 33
CONFIDENTIAL
DRAFT REPORT

http://www.gnucitizen.org/blog/username-enumeration-vulnerabilities/
https://www.owasp.org/index.php/Testing_for_User_Enumeration_and_Guessable_User_Account_%28OWASP-AT-002%29
http://www.cpni.gov.uk/documents/publications/2011/2011026-development_and_implementation_of_secure_web%20applications.pdf?epslanguage=en-gb

INCLUDE
SECURITY

Recommended Remediation:

The assessment team recommends reviewing the design of the cryptographic system and
considering other implementations that would not involve storing secrets in the source code.
For example, the EasyCrypt application could extract secrets to a separate file outside the
source code tree. It could then protect that file with suitable file system level access controls
and an encryption mechanism that requires user interaction to decrypt it, such as a key store
that requires a user-provided password upon system restart.

References:

Cryptography API: Next Generation

The Cryptography API, or How to Keep a Secret

Windows Data Protection

Keychain Services Tasks for Mac OS X

Essentials of the Java Programming Language: A Hands-On Guide, Part 2, Lesson 3:

Cryptography
Cryptography with Java, Cryptographic Keys

L3: Insecure Mailgun WebHook Implementation

Description:

EasyCrypt uses the Mailgun service to handle emails sent to registerpublickey@easycrypt.co.
When an email is received by Mailgun for this email account an HTTP POST request is sent to
EasyCrypt servers, this request is then handled by PublicKkeyRegistration.on_post.

Using source code review it was possible to identify that the webhook handler does not
authenticate the received information in any way before processing it. This allows an attacker
to send specially crafted information to the controller, which will process it just as if it were
sent by Mailgun.

Recommended Remediation:

The assessment team recommends implementing the recommendations regarding “Securing
Webhooks” included in the Mailgun webhook documentation

References:

Mailgun webhook documentation

Page 19 of 33
CONFIDENTIAL
DRAFT REPORT

http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms867086.aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://developer.apple.com/library/IOs/documentation/Security/Conceptual/keychainServConcepts/03tasks/tasks.html
http://java.sun.com/developer/onlineTraining/Programming/BasicJava2/crypto.html
http://java.sun.com/developer/onlineTraining/Programming/BasicJava2/crypto.html
http://www.informit.com/articles/article.aspx?p=170967&seqNum=3
https://documentation.mailgun.com/user_manual.html#webhooks
https://documentation.mailgun.com/user_manual.html#webhooks

INCLUDE
SECURITY

L4: Weak User Password Requirements

Description:

The EasyCrypt application requires users to choose a password with at least 8 characters,
containing a minimum of 2 digits and 2 letters. Given the sensitive information protected by
this password: emails and private PGP key, the security assessment team believes that the
password strength requirements are weak and must be increased.

Weak user password requirements will give attackers a higher probability of guessing a user's
password.

Recommended Remediation:

The assessment team recommends reviewing the unique security and UX requirements of the
system and explore if the enforcement of stronger passwords with high entropy can be
implemented. A suitable password strength policy should contain the following attributes:

e A minimum password length of at least 14 characters

e Require mixed character sets: alpha, numeric, special, mixed case

e Does not contain the username

e Does not contain commonly used passwords such as password123password,

12345678901234, etc.
e Does not contain common words such as: easycrypt

References:

Weak Password Requirements
Password Strength

L5: Credentials for External Services Stored in Source Code

Description:

Credentials for external services were found within the EasyCrypt source code. As access to the
source code may be exposed due to another exploit (e.g., file traversal) or via a shared source
code repository, any attacker or malicious insider would have access to these secrets. This may
enable them to attack the services used by the application.

Page 20 of 33
CONFIDENTIAL
DRAFT REPORT

https://cwe.mitre.org/data/definitions/521.html
https://en.wikipedia.org/wiki/Password_strength

4 INCLUDE
SECURITY

The vulnerability was found in these locations:

File Line Number(s) | Type
easycrypt-pk_dir/tools/cred_encryptor.py 33 MySQL password
easycrypt-ec_auth/config/app.example.ini 10 MySQL password
easycrypt-ec_auth/config/app.example.ini 13 Mailgun API key

Recommended Remediation:

The assessment team recommends reviewing the application design and considering other
implementations that would not involve storing secrets in the source code. For example, the
EasyCrypt application could extract secrets to a separate file outside the source code tree. It
could then protect that file with suitable file system level access controls and an encryption
mechanism that requires user interaction to decrypt it, such as a key store that requires a user-
provided password upon system restart.

References:

Cryptography API: Next Generation

The Cryptography API, or How to Keep a Secret

Windows Data Protection

Keychain Services Tasks for Mac OS X

Essentials of the Java Programming Language: A Hands-On Guide, Part 2, Lesson 3:

Cryptography
Cryptography with Java, Cryptographic Keys

L6: Content Security Policy Not Implemented

Description:
None of the EasyCrypt applications implement a content security policy.

Content Security Policy is a W3C specification which offers the possibility for an application to
instruct the client browser about which locations and/or which type of resources are allowed to
be loaded within the application. To define a loading behavior, the CSP specification uses
“directives” which define a loading behavior for a target resource type.

CSP is a very effective way to prevent Cross-Site Scripting vulnerabilities and also forces
developers to split view and controller code.

Page 21 of 33
CONFIDENTIAL
DRAFT REPORT

http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms867086.aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://developer.apple.com/library/IOs/documentation/Security/Conceptual/keychainServConcepts/03tasks/tasks.html
http://java.sun.com/developer/onlineTraining/Programming/BasicJava2/crypto.html
http://java.sun.com/developer/onlineTraining/Programming/BasicJava2/crypto.html
http://www.informit.com/articles/article.aspx?p=170967&seqNum=3

INCLUDE
SECURITY

Recommended Remediation:

1. Understand the CSP benefits, complexities and different types of directives. Special
attention should be paid to the latest CSP implementation mode which uses nonces, as
it is easier to implement and very effective.

2. Analyze the effort associated with enabling CSP for the different EasyCrypt applications

3. Enable the CSP in Report-Only mode. Analyze and fix all the policy errors received by
browsers

4. Change the CSP to enforce mode

References:

OWASP — Content Security Policy

L7: HTTP Strict Transport Security Not Implemented

Description:

HTTP Strict Transport Security (HSTS) is a web security policy mechanism which helps to protect
websites against protocol downgrade attacks and cookie hijacking. It allows web servers to
declare that web browsers (or other complying user agents) should only interact with it using
secure HTTPS connections, and never via the insecure HTTP protocol. The HSTS Policy is
communicated by the server to the user agent via an HTTP response header field named Strict-
Transport-Security.

None of the following domains implement HSTS:
e auth.stage.easycrypt.co
e pkd.stage.easycrypt.co
e webmail.stage.easycrypt.co
e account.stage.easycrypt.co

This situation could be exploited by an attacker to perform protocol downgrade attacks which
could be used to intercept and/or modify HTTP traffic between the user and EasyCrypt servers.

Recommended Remediation:

The assessment team recommends implementing HSTS in order to protect against Man-in-the-
Middle attacks by including the following HTTP response header in all responses sent by the
toosheh.org application:

| Strict-Transport-Security: max-age=31536000; includeSubDomains

Page 22 of 33
CONFIDENTIAL
DRAFT REPORT

https://www.owasp.org/index.php/Content_Security_Policy

INCLUDE
SECURITY

Special care should be taken before enabling HSTS since an incorrect implementation might
lead to a self-inflicted denial of service which will block users from accessing parts of the
application. Before enabling HSTS, make sure all the application content, such as CSS, JS and
images is accessible over HTTPS and is hosted on the toosheh.org site.

Once the HSTS implementation is complete, consider submitting the domain to Chrome's
preload list, which will add extra security for Chrome users since the initial HTTP request is
never sent if the site is in the preload list.

References:

HTTP Strict Transport Security — OWASP
HTTP Strict Transport Security — Wikipedia

L8: Missing X-XSS-Protection Header

Description:

The EasyCrypt application doesn't set the HTTP X-XSS-Protection header. This header enables
the XSS filter within the browser so that the browser will prevent certain types of Cross-Site
Scripting attacks.

Recommended Remediation:

The assessment team recommends adding the missing HTTP response header to all responses,
as follows:

X-XSS-Protection: 1; mode=block

References:

OWASP Secure Headers Project

L9: Missing X-Frame-Options Header

Description:

EasyCrypt's web application is vulnerable to clickjacking. Clickjacking attacks typically use a
combination of stylesheets, iframes, and form elements to convince a targeted user that they

Page 23 of 33
CONFIDENTIAL
DRAFT REPORT

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Headers

INCLUDE
SECURITY

are interacting with an innocuous page when instead, they are typing into or clicking on an
invisible frame controlled by an attacker. A successful clickjacking attack could circumvent
cross-site request forgery (CSRF) protections that attempt to confirm transactions with the
user, resulting in an unwanted transaction.

Recommended Remediation:

Given that the previously explained mitigating risk factors might change in the future, the
security assessment team recommends that all HTTP responses from the web server contain
these headers:

X-Frame-Options: DENY
Content-Security-Policy: frame-ancestors 'none'.

These headers indicate to browsers that the response is not allowed to be contained inside an
iframe. If a portion of the user interface needs to be framed by another area of the application,
then the assessment team recommends using the following header for those areas instead:

X-Frame-Options: SAMEORIGIN
Content-Security-Policy: frame-ancestors 'none’.

References:

OWASP Clickjacking Page

Busting Frame Busting: a Study of Clickjacking Vulnerabilities on Popular Sites
The X-Frame-Options Response Header

Combating Clicklacking With X-Frame-Options

L10: AES CFB Mode Encryption Used Without Integrity Checking

Description:

The EasyCrypt application uses AES' Cipher Feedback (CFB) mode of operation to encrypt and
decrypt information in the following source code sections:

e easycrypt-ec_auth/common/jwt_helper.py

e easycrypt-pk_dir/common/jwt_helper.py

e easycrypt-ec-webmail/plugins/ec_private/jwt/ec_jwt.php

AES' CFB operation mode is considered more secure than ECB and CBC, but it does not verify
the integrity of the data received before decrypting it, which could be abused by an attacker to
perform complex cryptographic attacks on the application.

Page 24 of 33
CONFIDENTIAL
DRAFT REPORT

http://www.owasp.org/index.php/Clickjacking
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
https://developer.mozilla.org/en-US/docs/The_X-FRAME-OPTIONS_response_header
https://blogs.msdn.microsoft.com/ieinternals/2010/03/30/combating-clickjacking-with-x-frame-options/

INCLUDE
SECURITY

Recommended Remediation:

The assessment team recommends using AES with Galois/Counter Mode (GCM) which provides
both confidentiality and integrity for the information being exchanged.

References:

Galois/Counter Mode

Page 25 of 33
CONFIDENTIAL
DRAFT REPORT

https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Galois/Counter_Mode

INCLUDE
SECURITY

INFORMATIONAL FINDINGS
I11: Use of RoundCube Version with Known Vulnerabilities

Description:

The EasyCrypt software as a service was created using the RoundCube webmail application. It
was possible to identify that the RoundCube version in use is 1.2.1 and that the latest available
version in the 1.2 branch is 1.2.4.

The RoundCube project change log indicates that several vulnerabilities were fixed in releases
1.2.2,1.2.3 and 1.2.4. These vulnerabilities might not be exploitable in EasyCrypt because they
affect specific areas of the RoundCube code which are not in use. These assumptions were not
confirmed by the security assessment team because they were out of the scope of the
engagement.

Recommended Remediation:

The assessment team recommends:
e Update to the latest stable RoundCube version
e Actively monitor new RoundCube releases and update to the latest release if new
vulnerabilities are identified
e Actively monitor any security related issues or pull requests in the RoundCube GitHub
repository

References:

Top 10 2013 / A9 / Using Components with Known Vulnerabilities

12: Input Validation Not Used Consistently Throughout Application

Description:

The input validation performed by the various REST APIs and web applications which compose
the EasyCrypt application is weak, situation which lead to various application security
vulnerabilities and will lead to more issues in the future.

For example, the UsersKeyResource.on_post controller method uses the
key_importer_resource_on_post_on_patch function to validate the email parameter, but does
nothing to validate the public_key and private_key attributes:

Page 26 of 33
CONFIDENTIAL
DRAFT REPORT

https://github.com/roundcube/roundcubemail/wiki/Changelog
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities

INCLUDE
SECURITY

class UsersKeyResource(BaseResource):
@falcon.before(ec_validators.key_ importer_resource_on_post_on_patch)
def on_post(self, req, resp):
private_key = None
user = req.context['user']()
public_key = req.context['doc']['public_key"']
if 'private_key' in req.context['doc']:
private_key = req.context['doc']['private_key']

def key_importer_resource_on_post_on_patch(req, resp, resource, params):
validation = {'email': [Required, Pattern("~\S+@\S+\.\S+$")]}
is_valid, msg = validate(validation, req.context['doc'])
if is_valid is False:
raise ECException(falcon.HTTP_400, "error", msg)

Also, the regular expression A\S+@\S+\.\S+$ accepts email addresses which are not valid
according to the RFC.

Recommended Remediation:

The assessment team recommends implementing strict input validation using white lists for all
inputs accepted by the application. Input validation is the corner-stone of application security
and will prevent most vulnerability classes if properly implemented.

References:

Input Validation

I13: Missing X-Content-Type-Options Header

Description:

The EasyCrypt application does not set the HTTP header X-Content-Type-Options which
prevents Internet Explorer and Google Chrome from content-sniffing and interpreting a
response which differs from the declared content-type. Setting this header reduces exposure to
drive-by download attacks and sites serving user-uploaded content that, by clever naming,
could be treated by MSIE as executable or dynamic HTML files.

Recommended Remediation:

Configure the nginx server to add the X-Content-Type-Options header with value to nosniff to
all HTTP responses:

| X-Content-Type-Options: nosniff

Page 27 of 33
CONFIDENTIAL
DRAFT REPORT

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

4 INCLUDE
SECURITY

References:

OWASP — List of useful HTTP headers

Page 28 of 33
CONFIDENTIAL
DRAFT REPORT

https://www.owasp.org/index.php/List_of_useful_HTTP_headers

INCLUDE
SECURITY

APPENDICES

Al: EasyCrypt Service Description

EasyCrypt allows users to send and receive PGP-encrypted emails using a software as a service
model which integrates with Gmail, Outlook and any email service providing IMAP. This
integration allows users to continue using their existing email address and increase the security
of their communications by encrypting emails end to end.

One of EasyCrypt's main features is that all the technical details related to encrypting emails
and attachments, sharing PGP keys, verifying email signatures and decrypting email contents
are hidden from the user and performed using cryptography best practices.

Users consume the EasyCrypt service by logging into their webmail account at
https://webmail.easycrypt.co/login/, or through the Tor hidden service provided at
http://webmail.ezcrypt2dgcicxqj.onion/login. The main features provided by the application
are:

e Generation of PGP keys from the browser

e Secure storage of public and private PGP key

e Sending and receiving PGP-encrypted emails using existing email address

e Sending and receiving clear-text emails using existing email address

e Import and export PGP keys

Some features, such as end-to-end metadata protection and perfect anonymity are not coded
completely and were not tested.

A2: Architecture Review

The EasyCrypt software as a service is built based on the Open Source RoundCube project, a
flexible and extensible webmail application developed in the PHP language. EasyCrypt
developers modified the RoundCube source, created new plugins and skins to add security and
encryption. The webmail application is available at webmail.easycrypt.co and
webmail.ezcrypt2dgcicxgj.onion and is the main entry point for all users.

The RoundCube version used to build EasyCrypt is 1.2.1.

The software as a service uses a micro-service architecture, these domains are also part of the
architecture and provide critical features:

e auth.easycrypt.co: User authentication process

e pkd.easycrypt.co: PGP key directory

e account.easycrypt.co: User account settings and sign-up process

Page 29 of 33
CONFIDENTIAL
DRAFT REPORT

https://webmail.easycrypt.co/login/
http://webmail.ezcrypt2dgcicxqj.onion/login

INCLUDE
SECURITY

These micro-services expose both REST APIs and small web applications; and are consumed
using CORS requests generated by other domains in the EasyCrypt architecture or by clicking on
a link and browsing to a resource which generates HTML content.

The applications use a MySQL database to persist information such as the user's email address,
authentication credentials, and PGP keys. Session information is stored in a Redis cache and is
removed when the TTL expires.

OpenPGP.js is used to handle encryption and decryption of emails in the user's browser, and
Crypto.js is used to provide hashing functions used during the login process.

References
How it works
Under the hood

A3: Architecture Risks

Important Note

During the security assessment, the security assessment team found that EasyCrypt developers
implemented the service features explained in the home page, FAQ and product
documentation following the guidelines explained in the under the hood document. In other
words, the analyzed version of EasyCrypt securely stores email provider credentials, EasyCrypt
account password, and private PGP keys and implements a secure process for authentication
and email encryption.

The risks and attack scenarios explained in the following sections are inherent to EasyCrypt's
architecture. There is no indication that these attack scenarios are actively exploited at the
moment, but they are technically feasible and users should take them into account before using
the EasyCrypt service.

Email Provider Credentials

When a new user signs up for the EasyCrypt application he needs to provide his email
credentials: in the form of an OAuth2 access and refresh token or an IMAP username and
password. These credentials are encrypted with a key only known to the user and stored only in
EasyCrypt's database.

Page 30 of 33
CONFIDENTIAL
DRAFT REPORT

https://www.html5rocks.com/en/tutorials/cors/
https://openpgpjs.org/
https://www.npmjs.com/package/crypto-js
https://easycrypt.co/how-it-works/
https://easycrypt.co/under-the-hood/
https://easycrypt.co/under-the-hood/

INCLUDE
SECURITY

If an attacker gains access to the information stored in the database the only potential attack is
to brute-force the encryption, which is unfeasible and will most likely take tens or hundreds of
years.

Since EasyCrypt needs to access the clear-text version of the credentials in order to consume
the email providers and retrieve the user's emails, some code sections have access to this very
sensitive piece of information. An attacker who gained access to an application server or can
introduce changes to the source code repository could potentially modify the application in
such a way that clear text credentials are sent to an attacker-controlled server.

The code sections which use the clear-text credentials are:
e OAuth2 handler which receives the access and refresh token during user sign-up and
token refresh
e Methods used to read and send emails using a service provider

Please note that in this scenario the attacker would only be able to retrieve clear-text
credentials for users which are, at the moment of the attack, using the previously enumerated
features. This reduces the attack impact, but still affects any user which has an active session in
the EasyCrypt application during the attack.

Clear Text Emails

EasyCrypt handles two types of emails: PGP-encrypted and clear-text. The PGP-encrypted
emails are secured by end to end public key cryptography and the message is private even
when intercepted by a third party. A privacy concern exists with the clear-text emails which are
sent and received using the EasyCrypt application.

Since EasyCrypt uses the subscriber's credentials to read emails from the email service provider
and then shows their contents in the EasyCrypt webmail application, it is trivial to understand
that there are sections of the EasyCrypt application which handle clear-text emails. An attacker
who gained access to an application server or can introduce changes to the source code
repository could potentially modify the application in such a way that clear text emails are sent
to an attacker-controlled server.

Please note that in this scenario the attacker would only be able to exfiltrate clear-text emails
which are read by an active user while the attack is taking place. This reduces the attack impact,
but still affects emails read by any user which has an active session in the EasyCrypt application
during the attack.

Page 31 of 33
CONFIDENTIAL
DRAFT REPORT

INCLUDE
SECURITY

Proposed Solution

This application's security can be improved if these rules are followed:
e User credentials should never be in clear-text in EasyCrypt servers
e User emails should never touch EasyCrypt servers

These rules can be implemented at least for the Gmail email service provider by using OAuth's
implicit flow and Google's CORS API.

The OAuth implicit flow can be used to get an access token for the Gmail REST API. The
difference in this flow is that the access token never reaches EasyCrypt servers and doesn't
require any server-side interactions from EasyCrypt to be generated. The access token is
handled by the JavaScript code running client-side at the user's browser. Once received the
user could encrypt it using his EasyCrypt public key and send it to EasyCrypt for storage.

Google's REST APIs can be consumed using CORS and an access token. When the user
authenticates against EasyCrypt an encrypted bundle containing the access token and private
PGP key should be sent to the user. The client-side application can then talk directly to Google
REST APIs to retrieve emails and (if necessary) decrypt them.

OPSEC Risk Minimization for Users

The risks associated with EasyCrypt's architecture can be mitigated by signing up for the service
using a new email account which *must only be used for PGP-encrypted emails*. By following
this recommendation any email contents which might be leaked by a compromise of EasyCrypt
servers will be encrypted, and access to the credentials associated with this new email account
will only yield encrypted emails which are of very low value for an attacker.

A4: Test Coverage

The main engagement goal was to review EasyCrypt's architecture and identify issues in the
building blocks, interactions between the micro-services, and insecure usage of cryptographic
algorithms. This light-weight high-level review should not be considered an in-depth security
assessment. The scope of this review included a cursory review of the following domains:

e auth.stage.easycrypt.co

e pkd.stage.easycrypt.co

e webmail.stage.easycrypt.co

e account.stage.easycrypt.co

Page 32 of 33
CONFIDENTIAL
DRAFT REPORT

http://tools.ietf.org/html/draft-ietf-oauth-v2-31#section-1.3.2
http://tools.ietf.org/html/draft-ietf-oauth-v2-31#section-1.3.2
https://developers.google.com/api-client-library/javascript/features/cors

INCLUDE
SECURITY

As well as a brief look into the following source code repositories:
e easycrypt-ec_auth (commit: b42acb56ac45)
e easycrypt-ec_login (commit: aba5a2d02795)
e easycrypt-ec-webmail (commit: 0a28dd7be148)
e easycrypt-pk_dir (commit: b65cfe0ff044)

During the engagement, some vulnerabilities such as Persisting Cross-Site Scripting and Redis
Key Query Injection were identified through automated scanning, manual testing, and source
code review.

It is important to notice that the goal of this engagement was not to identify vulnerabilities in
all of the application resources and parameters; thus it is likely that other implementation-
related vulnerabilities are present. The application security assessment team recommends
performing an in-depth web application penetration test to identify all vulnerabilities.

Page 33 of 33
CONFIDENTIAL
DRAFT REPORT

