
Updates and Responses to Stegotorus Pen Test
Report by Radically Open Security

Stegotorus Project

March 15, 2020

Contents

1 Introduction 1

2 Fixed issues in the actual used code 1

3 Fixed issues in the dead code never run in Stegotorus and
therefore we did not review in advance: 2

4 Issues considered not to be valid 2
4.1 003 — Insecure File Transfers From Remote Apache Hosts in

PayloadScraper::scrape() and PayloadScraper::compute_capacity() 2
4.2 004 — Data Corruption in curl_read_data_cb() 3
4.3 008—Undefined Behaviour From curl in ApachePayloadServer::ApachePayloadServer() 4
4.4 012 — Missing Input Validation in find_content_length() . 5
4.5 015 — Potential Crash in chop_config_t::conn_create() . 5

1 Introduction

After receiving the code review, we studied all the finding from the ROS re-
port. We fixed most of the issues including those which were concerning dead
codes (not running in Stegotorus). Those issues that have been fixed have a
corresponding commit on github. The following is the detailed response to
the audit findings:

2 Fixed issues in the actual used code

1. 001 — Potential Remote Code Execution in src/network.cc

1

2. 006— Stack-Based Buffer Overflow in PayloadScraper::scrape_url()

3. 007—Off by One in modus_operandi_t::process_command_line_config()

4. 010 — Potential Off by One in PayloadServer::find_uri_type()

5. 013 — Duplicated Code in the JSSteg Class (duplicated code deleted)

6. 014 — Signal-Unsafe Function Used in lethal_signal()

7. 016 — Undetected Compression Errors in JSSteg::encode()

8. 017 — Integer Underflow in JPGSteg::starting_point()

This was fixed but would only pertain to cover file over 2GB size which
Stegotorus never transfers.

9. 018 — Temporary Filename Issue in PayloadScraper::scrape()

3 Fixed issues in the dead code never run in Stego-
torus and therefore we did not review in advance:

1. 002 — Dangerous behaviour in gen_uri_field()

2. 005 — Dangerous Behaviour in mkem.cc (dead code removed)

3. 009 — Potential Crash in embed_steg_t::receive()

4. 011— Potential Invalid Access and Information Leak in http_steg_t::http_client_uri_transmit()

4 Issues considered not to be valid

4.1 003 — Insecure File Transfers From Remote Apache
Hosts in PayloadScraper::scrape() and PayloadScraper::compute_capacity()

We do not believe that this is a vulnerability as the payload scraper is con-
tacting the cover server. It does not matter who is the cover server and
what content it serves us. We may as well scrape the cover content from
arbitrary observed Internet traffic (as http steg mod does). We do not rely
on the cover content. If the content does not correspond to the type we have

2

requested, the corresponding file steg module fails to encode content in it
and will be flagged as unusable. As such, we do not trust the cover server in
any way and so do not need to authenticate the authenticity of its content.
Q.E.D.

4.2 004 — Data Corruption in curl_read_data_cb()

"First, the result of the multiplication of the two sizet parameters size and
nmemb would potentially result in an integer overflow, when the result is
stored in a variable of the same size (here nobytes2read). Fortunately, the
CURL API documents that size will always be 1. However, this may change
in a future release and the code should be updated to handle this situation
safely."

We do not think that this happens because curl expects to return the
actual number of bytes read in sizet therefore it does not make sense for
curl to make more bytes available than actually we can read, that would be
considered a bug in curl.

in case, curl will change the prototype and Stegotorus will not compile
as is.

"Then, another mistake was apparently made, where nobytes2read is mul-
tiplied again by size when populating the underlying stringstream. Luckily,
again, size should be 1, therefore avoiding a bad consequence."

fixed.
"Regardless, the data provided by CURL comes from a remote server,

and may contain NUL characters (0x00). In this case, the incoming data
will probably be cut short at the first occurrence of this character."

This does not occur according to the c++ ref doc and we tested it and
it doesn’t happen:

#include <iostream>
#include <string>
#include <sstream>
#include <memory.h>

using namespace std;

int main()
{

char* teststring[100];

3

stringstream sStream;
memcpy(teststring, "test1\0test2\0test3\0", 15);
sStream.write((const char*)teststring, 15);

cout << sStream.str().length() << endl;
}
/// from C++ ref doc of stringstream.write:
// This function simply copies a block of data, without checking its contents:
//The array may contain null characters, which are also copied without stopping the copying process.

//output
//g++ streamwrite.cpp
//[user@machine test]$./a.out
//15

"If the incoming data is long enough, this callback will be called again,
with the same effect, corrupting the result in memory some more.

Since this callback returns no_bytes_2_read without obtaining errors
from the stringstream object, CURL cannot detect this issue in the callback,
and will keep proceeding as if no error was made."

It does:

if(((stringstream*)userp)->bad()){
log_debug("Error reading data from curl");
return 0;

}

4.3 008—Undefined Behaviour From curl in ApachePayloadServer::ApachePayloadServer()

"The constructor for the ApachePayloadServer class will only initialize the
curl handler if it is set to NULL at that time."

This is not what this line:

if (!(_curl_obj = curl_easy_init()))
log_abort("Failed to initiate the curl object");

does. It tries to initialize the _curl_obj no matter what and if it fails it
aborts the execution of Stegotorus. So this:

"From the lines 116 on, if _curl_obj was not actually initialized as
intended, the behaviour of the program will be undefined."

does not happen. [Q.E.D]

4

4.4 012—Missing Input Validation in find_content_length()

This has been resolved before the audit, auditor seems to have been looking
at an older version of the code.

4.5 015 — Potential Crash in chop_config_t::conn_create()

repetition of issue 1

5

	Introduction
	Fixed issues in the actual used code
	Fixed issues in the dead code never run in Stegotorus and therefore we did not review in advance:
	Issues considered not to be valid
	003 — Insecure File Transfers From Remote Apache Hosts in PayloadScraper::scrape() and PayloadScraper::compute_capacity()
	004 — Data Corruption in curl_read_data_cb()
	008 — Undefined Behaviour From curl in ApachePayloadServer::ApachePayloadServer()
	012 — Missing Input Validation in find_content_length()
	015 — Potential Crash in chop_config_t::conn_create()

