
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Audit-Report Monocypher Crypto Library 06.2020
Cure53, Dr.-Ing. M. Heiderich, Dr. N. Kobeissi

Index

Introduction

Scope

Identified Vulnerabilities

MON-01-001 Monocypher: CSPRNG handling unspecified on Darwin (Low)

MON-01-004 Monocypher: Elligator2 test vectors not replicated (Low)

MON-01-005 Monocypher: Safe/unsafe functions not differentiated (Medium)

MON-01-006 Monokex: Authentication code verification unspecified (Medium)

Miscellaneous Issues

MON-01-002 Monocypher: Potential for nonce misuse (Medium)

MON-01-003 Monokex: Key derivation not justified by security reduction (Info)

Conclusions

Introduction
“I wanted the simplicity of TweetNaCl, only with the latest and greatest at the time
(Chacha20, Blake2b, Argon2i). That's what I started with: an unassuming clone of
TweetNaCl with a couple tweaks. Then I began to improve performance, and
Monocypher quickly became its own thing: a compact, portable, opinionated, fast crypto
library.”

From https://monocypher.org/why

This report describes the results of a cryptography audit carried out by Cure53 against
the Monocypher library in version 3.1.1. The work was requested by the Monocypher
maintainers and funded by the Open Technology Fund program. Cure53 completed the
project in late June 2020.

To give more details on the context, Cure53 examined the Monocypher 3.1.1. Version,
available as a downloadable tarball for auditing purposes. Precisely in Calendar Week
26 of 2020, two members of the Cure53 team spent six days on preparations, examining

Cure53, Berlin · 07/07/20 1/8

https://cure53.de/
https://monocypher.org/why
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

the scope, as well as documentation. The methodology in use was white-box, which
stems from the nature of the project and all relevant code being available as Open
Source.

The project started on time and progressed efficiently. The communications during the
test were done in a dedicated private Slack channel into which the Cure53 invited the
maintainer of the Monocypher library and software. Communications were fluent and no
major roadblocks were experienced during the test, the audit was assisted by the well-
readable code that did not offer an attack surface or delays related to lack of clarity or
confusion.

The testing and auditing managed to unveil a total of six findings, four of which were
classified to be security vulnerabilities of varying severity and two represent general
weaknesses marked by lower exploitation potential. The most serious risks were set at
Medium severity-levels, which contributes to a positive impression. Note that one of the
findings was live-reported to the maintainer while the test was still ongoing and first fixes
were created by the maintainer and inspected by Cure53.

In the following sections, the report will first shed light on the scope and key audit
parameters, inclusive also of a list of files sorted by priority. Next, all findings will be
discussed in a chronological order alongside technical descriptions, as well as PoC and
mitigation advice when applicable. Finally, the report will close with broader conclusions
about this 2020 project. Cure53 elaborates on the general impressions and reiterates the
verdict based on the testing team’s observations and collected evidence. Tailored
hardening recommendations for Monocypher are also incorporated into the final section.

Cure53, Berlin · 07/07/20 2/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Monocypher Crypto Audit

◦ Monocypher 3.1.1
▪ https://monocypher.org/download/monocypher-3.1.1.tar.gz
▪ https://github.com/LoupVaillant/Monocypher/releases/tag/3.1.1

◦ Files receiving primary focus were:
▪ src/monocypher.h
▪ src/monocypher.c
▪ src/optional/monocypher-ed25519.h
▪ src/optional/monocypher-ed25519.c

◦ Files receiving secondary focus were:
▪ src/deprecated/aead-incr.c
▪ src/deprecated/aead-incr.h
▪ src/deprecated/chacha20.c
▪ src/deprecated/chacha20.h

◦ Sources were made available to Cure53
◦ Test-supporting material and documentation were shared with Cure53

Cure53, Berlin · 07/07/20 3/8

https://cure53.de/
https://github.com/LoupVaillant/Monocypher/releases/tag/3.1.1
https://monocypher.org/download/monocypher-3.1.1.tar.gz
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. MON-01-001) for the purpose of facilitating any
future follow-up correspondence.

MON-01-001 Monocypher: CSPRNG handling unspecified on Darwin (Low)

It was found that Monocypher’s random number generator did not have a specified set of
handlers or system calls for seeding or obtaining randomness on Darwin-based
systems, including MacOS. While the documentation specifies linux/random.h for Linux
platforms, arc4random_buf1 for BSD and BCryptGenRandom() for Microsoft Windows,
no similar target is specified for MacOS.

It is recommended for the /dev/urandom provider to be explicitly specified on Darwin-
type systems in order to lessen the ambiguity that may be present when Monocypher is
deployed on these types of systems.

MON-01-004 Monocypher: Elligator2 test vectors not replicated (Low)

It was observed that Elligator2 was the only cryptographic primitive in Monocypher to
have custom test vectors which were not independently verified for correctness or
interoperability by comparing output with any other implementation.

Not verifying an exotic primitive for interoperability or correctness can lead to instances
in which incorrect behavior may not be detected, resulting in security and privacy
degradations. After this issue was reported and a third-party implementation was
recommended for comparison2, the Monocypher team replicated a sufficient number of
test vectors across both implementations. It was verified that interoperability was
achieved and that both implementations exhibited the same output to the chosen test
vectors.

Note: The issue was reported to the maintainer while the test was still ongoing. The fix
inspected by Cure53 was found valid and working.

1 The security of arc4random_buf() on various BSD-type systems is unclear, due to major flaws in the
 underlying RC4 cryptographic primitive: https://security.stackexchange.com/a/172905
2 https://github.com/Kleshni/Elligator-2

Cure53, Berlin · 07/07/20 4/8

https://cure53.de/
https://security.stackexchange.com/a/172905
https://github.com/Kleshni/Elligator-2
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

MON-01-005 Monocypher: Safe/unsafe functions not differentiated (Medium)

It was found that the naming conventions of Monocypher does not organically indicate
that some raw primitives, such as for example crypto_chacha20, are largely intended as
underlying constructions for crypto_lock or crypto_lock_aead. They should not be
accessed directly. This is despite large differences in safety and being fool-proof.
between high-level and low-level API functions.

As a result, Monocypher exposes its cryptographic library’s API with all functions having
the same flat hierarchy. Even the documentation and the source code do not
differentiate between high-level and low-level functions.

This manner of designing a cryptographic library can result in users not understanding
the significantly different security guarantees provided by raw construction, such as
crypto_poly1305, when compared with crypto_lock. Therefore, they may be used
interchangeably.

It is recommended for the API to adopt an entirely new naming scheme. The
documentation needs to be re-organized to reflect a hierarchy between preferred, safe-
by-default and high-level functions versus the less safe and volatile, low-level primitives
that should only be used in specific circumstances.

MON-01-006 Monokex: Authentication code verification unspecified (Medium)

The Monokex specification does not properly specify the message authentication code
(MAC) logic for communicated messages. The derivation of MAC values (denoted by a
number prefixed with T, e.g. T1 = Blake2b(H9 || one)) is indicated in the protocol flow
but the purpose of T as a message authentication code and the point and method at
which it is verified as such by either party is not specified anywhere.

It is recommended to properly specify the function of T values and the point in the
protocol flow at which they are authenticated locally by the respective principals.
Furthermore, it is recommended that the reasons for adopting this construction, which
does not benefit from the security proofs accompanying constructions such as HMAC or
Poly1305, is justified in the Monokex specification (see MON-01-003).

Cure53, Berlin · 07/07/20 5/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

MON-01-002 Monocypher: Potential for nonce misuse (Medium)

In order to preserve the discipline of having no extraneous allocations to memory,
Monocypher requires users to independently derive and specify nonces, despite the
requirement that they be used only once. The latter is done in order for their
cryptographic primitives to retain fundamental security guarantees.

It is unclear if this trade-off is necessary or whether it truly cannot be avoided. Virtually
no modern cryptographic libraries impose nonce generation on the user, and given that
the mishandling of nonces can result in catastrophic outcomes on the security
guarantees of primitives offered by Monocypher, it is recommended to consider
generating nonces for the user internally, returning them upon successful encryption.

Finally, it is unclear whether avoiding the allocation of nonces into memory means
effective security improvements for Monocypher, given that:

• Nonces are fixed-length, and thus memory safety issues are unlikely to occur.
• Nonces are public and assumed to be known by the attacker in virtually all

symmetric primitive security reductions.

As such, it could be considered to generate nonces for users on encryption.

MON-01-003 Monokex: Key derivation not justified by security reduction (Info)

Monokex patterns are clearly derived from handshake patterns originally specified within
the Noise Protocol Framework. For example:

• The X Monokex pattern matches the protocol flow and claimed security
properties of the X Noise handshake pattern.3 4

• The XK1 Monokex pattern matches the protocol flow and claimed security
properties of the XK1 Noise handshake pattern.5

3 https://noiseexplorer.com/patterns/X/
4 Also modeled using the Verifpal protocol verifier:
 https://verifhub.verifpal.com/c5603ff17dde570e107d39030844c40b
5 https://noiseexplorer.com/patterns/XK1/

Cure53, Berlin · 07/07/20 6/8

https://cure53.de/
https://noiseexplorer.com/patterns/XK1/
https://verifhub.verifpal.com/c5603ff17dde570e107d39030844c40b
https://noiseexplorer.com/patterns/X/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The main difference between Monokex patterns and Noise handshake patterns appears
to be the replacement of Hash-Based Key Derivation (HKDF) with regular, raw hashing.
While Monokex claims substantial performance benefits due to this change, especially in
embedded microcontroller environments, it is unclear whether these performance
improvements warrant the loss of the indifferentiability guarantees provided by the HKDF
construction6. Namely, there is no equivalent security reduction allowing for a
comparison between proofs of security obtained on Noise handshake patterns7 and
those potentially obtained from the Monokex constructions. Finally, while Monokex
employs keyed Blake2b hashing, this is not sufficiently clear in the specification, which
appears to suggest that MAC values are obtained purely by appending tuples together
and using the result as a hash input.

This observation does not come with any particular recommendation. However, it would
be advisable to expand the Monokex specification, adding more concrete arguments on
the eschewing of HKDF for raw hashing.

6 https://eprint.iacr.org/2010/264.pdf
7 https://link.springer.com/chapter/10.1007/978-3-030-45374-9_12

Cure53, Berlin · 07/07/20 7/8

https://cure53.de/
https://eprint.iacr.org/2010/264.pdf
https://link.springer.com/chapter/10.1007/978-3-030-45374-9_12
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
After spending six days on the Monocypher scope during this June 2020 project, two
members of the Cure53 team can confirm that the provided C code held well to their
scrutiny. Few findings with limited severities evidence a good security premise of
Monocypher. What is more, the code is exceptionally clean and demonstrates a clear
focus on security features. It relates to typical targets around embedded environments,
for instance by avoiding unnecessary memory allocations.

The findings highlight some exceptions linked to unspecified behavior (MON-01-001)
and a minor lack of rigor in test vectors (MON-01-004). Beyond these, no serious issues
were found in the Monocypher code itself. However, some issues were spotted in the
cryptographic library API design (see MON-01-005 and MON-01-002. Finally, the
Monokex protocol suite’s specification was found to be lacking critical details on the
behavior of its Message Authentication Codes (MON-01-006). In the same realm,
Cure53 also points out the necessity to justify its relatively bareboned key derivation
mechanism (MON-01-003).

In conclusion, while the Monocypher code is well-written and supported by clean,
documented code and a suitable amount of test vectors, the high-level design of the
Monocypher’s developer-exposed API could use more refinement (MON-01-005), as
could the specification of the Monokex suite of protocols (MON-01-006, MON-01-003).
Since no issues of High- or Critical-severity could be spotted in the timeframe available
for this audit, Cure53 concludes this 2020 assessment on a positive note.

Cure53 would like to thank Loup Vaillant-David who maintains Monocypher for his
excellent project coordination, support and assistance, both before and during this
assignment. Special gratitude needs to be extended to Open Technology Fund
Washington for sponsoring this project.

Cure53, Berlin · 07/07/20 8/8

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report Monocypher Crypto Library 06.2020
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	MON-01-001 Monocypher: CSPRNG handling unspecified on Darwin (Low)
	MON-01-004 Monocypher: Elligator2 test vectors not replicated (Low)
	MON-01-005 Monocypher: Safe/unsafe functions not differentiated (Medium)
	MON-01-006 Monokex: Authentication code verification unspecified (Medium)

	Miscellaneous Issues
	MON-01-002 Monocypher: Potential for nonce misuse (Medium)
	MON-01-003 Monokex: Key derivation not justified by security reduction (Info)

	Conclusions

