
1

OVERVIEW

During February and March 2017 Subgraph performed a security review of the NetAidKit
2.0 software. The NetAidKit is a USB powered “privacy router”. It is designed to connect to
untrustworthy wired and wireless networks so that the user’s hosts are firewalled within the
network and their traffic can be transparently tunneled over Tor and OpenVPN connections.

Subgraph testing focused on the application component of the NetAidKit firmware, specifi-
cally that which was developed by Free Press Unlimited.

During the testing we assumed the following threat scenarios:

1) The adversary was in control of some aspect of the external network

2) the adversary is a non-administrator on the same trusted network (behind the NetAid-
Kit)

The objectives of the adversary were assumed to include:

• Gaining control of the NetAidKit
• Monitoring or interfering with the user’s traffic assumed to be protected from such
• Gaining network exposure to the devices behind the device that should not be reach-
able because of NAT

Subsystems of the NetAidKit in scope for testing included:

• The management daemon written in C
• The web-based application

Questions that the audit was intended to help answer:

• Does the NetAidKit leak any information outside the VPN or Tor?
• Does the NetAidKit prevent unauthorized configuration changes by users who do not
intend for these changes to take place?

• Is it possible to attack the NetAidKit from outside in any way?
• Can the attacker push false updates to the NetAidKit?
• Can it be attacked over USB?

To perform these tests, we reviewed the source code and simulated attacks on NetAidKit
devices at the Subgraph premises.

2

SUMMARY

Testing resulted in findings that included 12 vulnerabilities. Three of the vulnerabilities are
rated high severity. The worst of these vulnerabilities allow for practical attacks to be con-
structed that can result in:

• Remote compromise of the NetAidKit device
• Monitoring of user activities (by users on the internal network)
• Imperceptibly change the user expected security protections of the NetAidKit

It’s worth noting that the NetAidKit device is extremely practical. We at Subgraph find them
very useful to have around. It is very good to see that tools such as these are audited by pro-
fessional security teams. We have ourselves used themduring travels and intend to continue
using the devices that we possess.

3

No. Finding Severity

V-001 Script Injection Via ESSID Listing In Web Interface High
V-002 Root Code Execution Via OpenVPN Configuration Files High
V-003 Cross-Site Request Forgery High
V-004 Configuration Missing CrossSite Script Headers Medium
V-005 Vulnerable to DNS re-binding Medium
V-006 HTML/JavaScript Injection Via Tor and OpenVPN Logs Medium
V-007 Directory Traversal Vulnerability in Session Handling of NetAidKit Daemon Medium
V-008 NetAidKit Daemon Firmware Update Signature Bypass Medium
V-009 Heap Overflow in NetAidKit Daemon Low
V-010 NetAidKit Daemon Leaks Tor Activity Low
V-011 Nginx Configuration Fails to Verify Host: Header Low
V-012 Missing PHP Configuration Hardening Settings Low

4

DETAILS

V-001: Script Injection Via ESSID Listing In Web Interface

Impact Likelihood Risk Estimated Cost to Remediate

High Medium High Low

Discussion

Subgraph discovered that the listing of Wireless ESSIDs in the web interface is vulnerable
to HTML element and script injection. Wireless ESSIDs are filtered through an inadequate
regular expression based input validator before being embedded into theweb interface. This
allows an attacker to inject HTML elements or JavaScript into the interface remotely via a
malicious access point. This vulnerability is found in both admin.pjs and setup_wan.pjs scripts.

Impact Analysis

At least two potentially NetAidKit compromising attacks are possible using this technique.
First, an attacker may construct elements, or use an SVG file, to trick the user into selection
the wrong access point which would allow for man-in-the-middle (MitM) attacks.

Secondly, an attacker may use this technique to inject some malicious JavaScript which will
run under a privileged domain. This would allow for:

• Disabling Tor/VPN
• Uploading of malicious OpenVPN configurations
• Reconfiguring the NetAidKit’s core settings.

Due to missing Content Security Policy (CSP) headers (V-004), an attacker may use this tech-
nique to load external JavaScript allowing for more advanced code injection without much
added sophistication to the overall attack (however, we do not want to imply that such at-
tacks are not possible without (V-004), a method for constructing the payload in the DOM
despite the ESSID size limitations may still be possible).

Remediation Recommendations

Externally supplied HTML and script content must never be rendered in the application DOM
context. The web application should avoid sanitizing this input and instead use the innerText
method to display the Wireless ESSID.

5

Additional Information

Examples of such malicious ESSIDs include:

<script src=</>//foo.com>
<svg onmouseover=alert(1)<s>>

The following screenshot demonstrates the issue:

Figure 1: NetAidKit Setup ESSID XSS

6

V-002: Root Code Execution Via OpenVPN Configuration Files

Impact Likelihood Risk Estimated Cost to Remediate

High Medium High Low

Discussion

Subgraph discovered that a user, or a maliciously injected script, may upload an OpenVPN
configuration and gain root access.

OpenVPN provides multiple script execution options in the configuration. The first one
being --up which NetAidKit code properly overrides. However, options such as --down,
--route-pre-up, and --iproutemay still be used in an uploaded OpenVPN configura-
tion. These options may be specified inline or an attack may use a chain of configuration file
uploads.

Impact Analysis

Since the NetAidKit is entirely responsible for the mechanics of bringing up an OpenVPN
connection, and it is expected that users of the NetAidKit are not normally able to gain root
access, we consider this to be a high impact vulnerability. Moreso, this can be coupled with
(V-001) and (V-004) in order to obtain a full path for an attacker to gaining root wirelessly and
remotely via a malicious access point.

Remediation Recommendations

NetAidKit should attempt to completely control how the OpenVPN client is started, and rely
as little as possible on the contents of the OpenVPN file. Parameters required must be
whitelistedwith all others not required removed. Most importantly, all parameters that corre-
spond to commands that the OpenVPN client will runmust be ignored if not entirely replaced
by those utilized by NetAidKit.

Additional Information

N/A

7

V-003: Cross-Site Request Forgery

Impact Likelihood Risk Estimated Cost to Remediate

High High High Low

Discussion

Much of the functionality in the NetAidKit management interface is not protected against
cross-site request forgery (XSRF or CSRF). Cross-site request forgery is an attack where an
adversary forces a browser (via redirect) to submit a request that they do not intend, with
the objective of performing some action in the trusted or authenticated session of the target
user. Because the user’s browsermakes the request, any credentials required to authenticate
that request will be automatically sent.

Interestingly there is support within the NAK web codebase for preventing XSRF. For exam-
ple, in the following code a token is generated and set in the session after user login (con-
trollers/UserController.php:44):

$_SESSION['token'] = md5(uniqid(rand(), true));

With the verification function (classes/Page.php:51):

protected function _checkToken($token)
{

if (!empty($token) && $token == $_SESSION['token'])
return true;

return false;
}

However, it’s only used in user configuration of the access point:

if (!$this->_checkToken($token))
exit(-1);

Impact Analysis

Numerous actions can be triggered by a remote website. One example is toggling Tor on/off.
An adversary can setup a website that forces the user’s browser to visit /admin/toggle_tor. If
this occurs while the user is authenticated, the status of Tor connectivity will change to either
on or off, depending on the state at the time of the attack..

8

Proof of concept:

An attacker creates a page that opens a newwindow, or refreshes the existingwindow to load
http://192.168.101.1/admin/toggle_tor. Upon user access of this, whichmay not be perceptible
to them, the action will be executed on their behalf by the NetAidKit backend.

The impact of this is that an adversary can tune the NetAidKit into a different mode of oper-
ation than the user expects, undermining its properties (they may quietly turn off Tor while
the user expects Tor to be enabled).

There are other potential consequences that depend on the exposed functionality.

Remediation Recommendations

The NAK should consistently utilize the XSRF protection that has already been implemented
across all user / admin actions. To do this, the NAK code will have to pull the token from the
session and add it to each POST request that gets sent for each possible action that a user
may perform through the interface, and then call the verification function in each supported
action prior to performing that action.

We also recommend that the NetAidKit minimize the duration of the user authentication ses-
sion, given that the use case is going to generally be that users login, setup wireless, and
then not login again until the next time and place where they intend to use the NetAidKit.
This reduces the window of exposure to this and other potential vulnerabilities.

Additional Information

N/A

9

V-004: Configuration Missing CrossSite Script Headers

Impact Likelihood Risk Estimated Cost to Remediate

Medium Medium Medium Low

Discussion

NeitherNginx nor the PHPweb application are configured to send strict Content Security Policy
(CSP) headers. This allows an attacker who is able to inject a limited amount of HTML or
JavaScript to load external resources and thus execute a more elaborate attack.

Impact Analysis

An example of the impact of this is the vulnerability described in (V-001) where an attack is
limited to injecting 32 characters. However, due to this issue an attacker can bypass the 32
character restriction by having the target client load external scripts.

Remediation Recommendations

Nginx or the PHP web application should send properly configured CSP headers. For exam-
ple:

Content-Security-Policy: connect-src 'self' nak.local; script-src 'self' nak.local;

This is only a small subset; a full implementation will require further configuration.

Additional Information

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

10

V-005: Vulnerable to DNS Rebinding

Impact Likelihood Risk Estimated Cost to Remediate

Medium Medium Medium Low

Discussion

We found that dnsmasq configuration did not enable DNS rebinding protection. This leaves
users potentially vulnerable to DNS rebinding attacks.

Impact Analysis

Because the internal NetAidKit IP address is known, the lack of DNS rebinding protection
could allowan attacker to leverage a cross-site scripting attack on awebsite the user is visiting
to attack the device.

Remediation Recommendations

Consider turning on rebinding protection in the dnsmasq options.

Additional Information

https://en.wikipedia.org/wiki/DNS_rebinding

11

V-006: HTML/JavaScript Injection Via Tor and OpenVPN Logs

Impact Likelihood Risk Estimated Cost to Remediate

Medium Low Medium Low

Discussion

Subgraph found that the externally-supplied data from the Tor and OpenVPN logs in the web
application are not sanitized. This results in a potential script injection vulnerability.

While the Tor logs should not pose an immediate problem due to the aggressive scrubbing
done by Tor for privacy reasons, the OpenVPN logs may display detailed and highly control-
lable information from the remote server. It is possible that a malicious OpenVPN server
could inject some HTML/JavaScript via the TLS certificate data, for example.

Impact Analysis

One attack scenario that Subgraph has considered is that of a malicious network operator
performing aman-in-the-middle attack against clients attempting to connect to an OpenVPN
server.

It may be possible for the attacker to force script injection through a certificate presented
for the server. The invalid connection would fail, and if the user checked the logs (say, to
investigate why), information parsed from the certificatemay end up in the OpenVPN log file.
This would be rendered in the DOM of the NetAidKit application, resulting in exploitation of
the vulnerability.

Remediation Recommendations

Either the logs need to be displayed via the innerText JavaScript method, or they should be
processed in PHP through the htmlentities function using the ENT_QUOTES option.

Additional Information

N/A

12

V-007: Directory Traversal Vulnerability in Session Handling of NetAidKit
Daemon

Impact Likelihood Risk Estimated Cost to Remediate

Medium Medium Medium Low

Discussion

Subgraph discovered a directory traversal vulnerability in processing of the session cookie
by the NetAidKit daemon.

To manage user sessions, the NetAidKit daemon creates small JSON files in the directory
/tmp/nakd_sessions containing information about the privilege level and user that the ses-
sion belongs to. The names for these files are chosen by secure random generation of a 36
character UUID string. The UUID string is both the filename of the session file as well as the
value stored in the session cookie.

When reading and writing these session files in response to an incoming session cookie, the
raw value from the cookie is appended to the path /tmp/nakd_sessions/ without any validation
that the string conforms to expected structure of a UUID string or verification that the string
does not contain any path metacharacters, especially the path element separation character
(‘/’).

This lets an attacker construct a session cookie that points to any path on theNetAidKit device
filesystem.

The issue is present in the following code:

static const char *__session_path(const char *sessid) {
static char sess_path[PATH_MAX];
snprintf(sess_path, sizeof sess_path, "%s/%s", SESSION_DIR, sessid);
return sess_path;

}

Impact Analysis

When the /nak-auth RPC handler is called with the “logout” argument set, the handler will call
nakd_session_destroy() with the session cookie value. This function simply calls unlink() on
the corresponding session file. Due to the flaw described above, this allows an attacker to
delete any file on the filesystem.

The following code shows the use of unlink() in nakd_session_destroy:

void nakd_session_destroy(const char *sessid) {

13

nakd_mutex_lock(&_session_mutex);
unlink(__session_path(sessid));
nakd_mutex_unlock(&_session_mutex);

}

If an attacker is able to upload a file to the device with a path they can predict, this vulnerabil-
ity could also allow the attacker to escalate privileges and bypass the authentication system
of the daemon.

Remediation Recommendations

Validate that the structure of the session file name matches a valid UUID value.

This code adapted from parse.c of libuuid demonstrates one way to do this:

int is_valid_uuid(const char *uuid) {
int i;

if (strlen(uuid) != 36)
return 0;

for (i=0; i < 36; i++) {
if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) {

if (uuid[i] != '-') {
return 0;

}
continue;

}
if (!isxdigit(uuid[i])) {

return 0;
}

}
// uuid is valid.
return 1;

}

Additional Information

N/A

14

V-008: NetAidKit Daemon Firmware Update Signature Bypass

Impact Likelihood Risk Estimated Cost to Remediate

Medium Medium Medium Low

Discussion

Subgraph discovered that the signature verification logic for firmware updates uses an API
incorrectly whichmay allow an attacker to provide amalicious firmware to the user for instal-
lation.

The man page for EVP_DigestVerifyFinal() describes the values that this function can return
and what they each mean:

EVP_DigestVerifyFinal() returns 1 for success; any other value indicates failure.
A return value of zero indicates that the signature did not verify successfully
(that is, tbs did notmatch the original data or the signature had an invalid form),
while other values indicate a more serious error (and sometimes also indicate
an invalid signature form).

It is possible for EVP_DigestVerifyFinal() to return values other than 0 and 1. On certain error
conditions it will return -1 or -2 as well.

The signature verification in updater.c accepts any non-zero return value as indication that
the signature was verified successfully:

rc = EVP_DigestVerifyFinal(mdctx, psignature, pkey_size);
if (!rc) {

nakd_log(L_WARNING, "Wrong signature (%s).", update_path);
} else {

nakd_log(L_DEBUG, "Good signature (%s).", update_path);
status = 0;

}

Impact Analysis

The version of OpenSSL included with NetAidKit was examined closely to determine the situ-
ations under which the error conditions may occur.

We concluded that with the current signature algorithm (RSA pkcs1 with SHA1) it’s not possi-
ble to return an error condition merely by corrupting the signature itself. This would have re-
sulted in a severe vulnerability where an attacker could simply replace an authentic firmware
update on the distribution site with a malicious version.

15

The remaining error conditions which are possible for an attacker to influence require caus-
ing specific small memory allocations to fail. It’s not impossible for an attacker to arrange
for this to happen, but in our opinion it would be difficult for an attacker to launch this attack
reliably and even to create a scenario in which this attack could be performed.

Remediation Recommendations

Determine if the signature verification completed successfully by checking for the specific
value 1 rather than any non-zero value:

if (rc == 1) {
nakd_log(L_DEBUG, "Good signature (%s).", update_path);
status = 0;

} else {
nakd_log(L_WARNING, "Wrong signature (%s).", update_path);

}

Additional Information

N/A

16

V-009: Heap Overflow in NetAidKit Daemon

Impact Likelihood Risk Estimated Cost to Remediate

Low Low Low Low

Discussion

Subgraph discovered that the log_execve() function inmisc.c of the NetAidKit Daemon incor-
rectly assumes that the return value from snprintf() cannot exceed the size parameter.

The man page for snprintf() says the following about the return value:

The functions snprintf() and vsnprintf() do not write more than size bytes (in-
cluding the terminating null byte (‘\0’). If the output was truncated due to this
limit, then the return value is the number of characters (excluding the terminat-
ing null byte) which would have been written to the final string if enough space
had been available. Thus, a return value of size or more means that the output
was truncated.

Impact Analysis

In the current version of the daemon this function is not used in any context where the string
is built fromuntrusted or attacker controlled input. However due to the nature of the function
it’s possible that in the future new functionality could be introduced which exposes this bug
in a way that creates an exploitable vulnerability.

Remediation Recommendations

Perform a check after snprintf() to detect that the appended text would have exceeded the
buffer size:

for (; *argv != NULL; argv++) {
format_len += snprintf(execve_log + format_len, NAKD_MAX_ARG_STRLEN

- format_len, " %s", *argv);
nakd_assert(format_len < NAKD_MAX_ARG_STRLEN);

}

Additional Information

N/A

17

V-010: NetAidKit Daemon Leaks Tor Activity

Impact Likelihood Risk Estimated Cost to Remediate

Low Low Low Low

Discussion

Subgraph discovered that the NetAidKit daemon provides an RPC interface to the Tor control
protocol that is accessible without authentication. The interface is restricted to a whitelist of
a few permitted commands, but some of these commands can leak sensitive information. In
particular, the stream-status query will return a list of all active TCP streams routed through
the Tor network at that moment.

GETINFO stream-status

HTTP/1.1 200 OK

Server: nginx/1.4.7
Date: Tue, 28 Mar 2017 03:04:50 GMT
Connection: close
Content-Length: 288

{
"jsonrpc":"2.0",
"id":1,
"result":[
"250+stream-status=\r\n",
"39 SUCCEEDED 3 151.101.21.140:443\r\n",
"50 SUCCEEDED 3 172.217.18.34:443\r\n",
"52 SENTCONNECT 3 107.23.23.164:443\r\n",
"51 SUCCEEDED 3 52.85.242.219:443\r\n",
".\r\n",
"250 OK\r\n"

]
}

Impact Analysis

Any user connected to the internal network can call this interface and learn about network
connections including browsing activity of other users.

18

Remediation Recommendations

The NetAidKit web interface only uses one command:

GETINFO status/bootstrap-phase

Consider restricting the whitelist further to include only this control command.

Additional Information

N/A

19

V-011: Nginx Configuration Fails to Verify Host: Header

Impact Likelihood Risk Estimated Cost to Remediate

Low Low Low Low

Discussion

Nginx is configured so that the Host header is ignored and requests are forwarded to the
application no matter what Host header is sent by the browser. This allows an attacker to
register domain names pointing to the fixed IP address of the device and perform various
attacks on the Same-origin Policy model.

Impact Analysis

As an example this flaw turns (V-006) into a remotely exploitable vulnerability. For this sce-
nario the user is tricked into browsing a website at a domain called attacker.com.

The following steps are then performed:

1) A domain name has been registered as nak.attacker.com which resolves to
192.168.101.1

2) The page at attacker.com sets the session cookie required to exploit V-001 with a do-
main scope for all subdomains of attacker.com

3) A form is created on the page with action=“http://nak.attacker.com/nak_auth” and an
input element named logout

4) Scripting on the page calls submit() on the form

Other attacksmay be possible such as redirecting the user to http://nak.attacker.com and then
stealing the administrator session cookie if the user logs into the UI through that address.

Remediation Recommendations

Configure Nginx to reject requests unless the Host header contains the fixed internal IP ad-
dress of the device. This can be accomplished by adding a default server block to the config-
uration file which returns an error code.

server {
listen 80 default_server;
return 444;

}

20

Additional Information

http://nginx.org/en/docs/http/request_processing.html

21

V-012: Missing PHP Configuration Hardening Settings

Impact Likelihood Risk Estimated Cost to Remediate

Low Low Low Low

Discussion

PHP FPM could benefit from additional hardening configurations.

We found the following hardening configuration options were missing:

• open_basedir protection
• Potentially dangerous functions and classeswere not disabled via the disable_functions
and disable_classes options

• upload_tmp_dir directory restrictions for file uploads
• allow_url_fopen was not disabled

Impact Analysis

While there is no direct impact for these configuration changes in relation to the findings
described in this report, hardening may help prevent future exploitation and would increase
the security of the NetAidKit web application.

Remediation Recommendations

Enable and tweak these options accordingly in the php.ini:

• upload_tmp_dir: consider making this a directory with minimal permissions, pos-
sibly mounted with noexec, nosuid, nodev.

• open_basedir: Restrict this to a minimum, ex: /nak/webapp, /var/log (or even
further by moving some to a subdir), and ini.upload_tmp_dir

• allow_url_fopen: should be set to off

Additional Information

N/A

22

	OVERVIEW
	SUMMARY
	DETAILS
	V-001: Script Injection Via ESSID Listing In Web Interface
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-002: Root Code Execution Via OpenVPN Configuration Files
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-003: Cross-Site Request Forgery
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-004: Configuration Missing CrossSite Script Headers
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-005: Vulnerable to DNS Rebinding
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-006: HTML/JavaScript Injection Via Tor and OpenVPN Logs
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-007: Directory Traversal Vulnerability in Session Handling of NetAidKit Daemon
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-008: NetAidKit Daemon Firmware Update Signature Bypass
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-009: Heap Overflow in NetAidKit Daemon
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-010: NetAidKit Daemon Leaks Tor Activity
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-011: Nginx Configuration Fails to Verify Host: Header
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-012: Missing PHP Configuration Hardening Settings
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

